# **APPENDIX C**

# **Air Quality Report**

Prepared by

Illingworth & Rodkin

September 2017

# WESTLANDS SOLAR PARK AND GEN-TIE CORRIDORS PROGRAM-LEVEL AIR QUALITY ASSESSMENT KINGS COUNTY, CALIFORNIA

# September 2017



**PREPARED FOR:** 

**BERT VERRIPS, AICP** Santa Ana, CA 92705

# **PREPARED BY:**

James Reyff ILLINGWORTH & RODKIN, INC. Acoustics · Air Quality 1 Willowbrook Court, Suite 120 Petaluma, CA 94954 (707) 794-0400 & Greg Darvin Atmospheric Dynamics, Inc. Torres Street 3 SW of Mountain View Sundog

Sundog P.O. Box 5907 Carmel-by-the-Sea, CA 93921

10-101

# INTRODUCTION

This report assesses the air quality impacts associated with implementation of the Westlands Solar The WSP Master Plan Area ("Plan Area") is located in an Park (WSP) Master Plan. unincorporated portion of Kings County, California, east of Interstate 5, between Avenal Cutoff Road and State Route 41, approximately 9 miles southwest of Lemoore, Ca.. The WSP Plan Area covers approximately 21,000 acres. The WSP consists of 12 subareas or solar development sites, each of which is planned to be occupied by a separate and distinct solar generating facility (SGF) to be constructed independently by third party solar development companies. The WSP Master Plan is intended to provide the overall planning framework within which each independent SGF will be developed, and the WSP EIR is intended to provide only programmatic or plan level environmental review for the Master Plan under CEQA. Prior to development, each SGF project will be required to obtain its own Conditional Use Permits (CUPs) and other entitlements from Kings County. During the County's review of each SGF application, it will undertake projectspecific environmental review under CEQA, which will include a construction-level air quality assessment. The required permit applications for the San Joaquin Valley Air Pollution Control District (SJVAPCD) also will be submitted at the project entitlement stage for each SGF.

For purposes of evaluating the plan-level environmental impacts associated with implementation of the WSP Master Plan, the Plan Area was divided into twelve (12) subareas or potential development sites for hypothetical SGFs. For purposes of analysis, assumptions were made regarding the size and construction schedule for each SGF. The first SGF is assumed to begin construction in 2016, and the final (12<sup>th</sup>) SGF is assumed to begin construction in late 2029.

Related to the WSP Master Plan are two generation-interconnection tie-lines (gen-ties), each approximately 11.5 miles long, connecting the WSP Plan Area to the Gates Substation. These gen-tie corridors are also in the initial planning stages, and therefore the WSP EIR provides only programmatic environmental review for these gen-tie corridors under CEQA. The gen-tie corridors are listed below:

- WSP-North to Gates Gen-Tie

- WSP-South to Gates Gen-Tie

The development assumptions also included supporting electrical facilities such as switching stations and substations, which would be constructed or upgraded as needed in conjunction with WSP development and gen-tie line construction. These facilities are anticipated to include two (2) 230kV switchyards within the WSP plan area, and upgrades to the existing PG&E substation at Gates.

The potential impacts of WSP solar and gen-tie projects on the local and regional air quality during construction and operation are assessed in this report. Development projects of this type in the San Joaquin Valley are most likely to cause air quality impacts from emissions generated during construction and indirect emissions from vehicles used to transport site employees and for vehicles dedicated for onsite maintenance uses. The San Joaquin Valley Air Pollution Control District (SJVAPCD) has published the Guide for Assessing and Mitigating Air Quality Impacts

(GAMAQI, Final Draft, March 2015) that was used to conduct this air quality analysis.<sup>1</sup> This report describes existing air quality conditions, construction period air quality impacts, operational air quality impacts (at both a local and regional scale), and identifies mitigation measures necessary to reduce or eliminate air quality impacts identified as significant.

# SETTING

# **TOPOGRAPHIC CONSIDERATIONS**

The WSP and related gen-tie corridors are located in the southwestern portion of the San Joaquin Valley Air Basin. The California Air Resources Board (CARB) defines the boundaries of the basin by the San Joaquin Valley within the Sierra Nevada Mountains to the east, the Coast Ranges in the west, and the Tehachapi mountains in the south. The valley is basically flat with a slight downward gradient to the northwest. The valley opens to the ocean at the Carquinez Strait where the San Joaquin-Sacramento Delta empties into San Francisco Bay. The San Joaquin Valley, thus, could be considered a "bowl" with the primary opening to the north. The surrounding topographic features restrict air movement through and out of the basin and, as a result, impede the dispersion of air pollutants from the basin. Wind flow is usually down the valley from the north, but the Tehachapi Mountains block or restrict the southward progression of airflow. The Sierra Nevada is a substantial barrier from the usual winds that have a general westerly flow. The topographical features result in weak airflow. The flow is further restricted vertically by inversion layers that are common in the San Joaquin Valley air basin throughout the year. An inversion layer is created when a mass of warm dry air sits over cooler air near the ground, preventing vertical dispersion of pollutants from the air mass below. During the summer, the San Joaquin Valley experiences daytime temperature inversions at elevations from 1,500 to 3,000 feet above the valley floor. Airflow is considerably restricted since mountain ranges surrounding the valley are generally above the inversion. These inversions lead to a buildup of ozone and ozone precursor pollutants. During the fall and winter months, strong surface-based inversions occur from 500 to 1,000 feet above the valley floor (SJVAPCD 1998). Wintertime inversions trap very stable air near the surface and lead primarily to a buildup of particulate matter air pollutants. Very light winds are also characteristic with these wintertime surface-based inversions.

# AIR BASIN CHARACTERISTICS

The climate of the project area is characterized by hot dry summers and cool, mild winters. Clear days are common from spring through fall. Daytime temperatures in the summer often approach or exceed 100 degrees, with lows in the 60s. In the winter, daytime temperatures are usually in the 50s, with lows around 35 degrees. Radiation fog is common in the winter, and may persist for days. Partly to mostly cloudy days are common in winter, as most precipitation received in the Valley falls from November through April.

Winds are predominantly up-valley (flowing from the north) in all seasons, but more so in the summer and spring months (CARB 1984). In this flow, winds are usually from the north end of

<sup>&</sup>lt;sup>1</sup> SJVAPCD. 2015. <u>Guide for Assessing and Mitigating Air Quality Impacts</u>. Revised March 2015.

the Valley and flow in a south-southeasterly direction, through Tehachapi Pass, into the Southeast Desert Air Basin. Annually, up-valley wind flow (i.e., northwest flow with marine air) is most common, occurring about 40% of the time. This type of flow is usually trapped below marine and subsidence inversions, restricting outflow through the Sierra Nevada and Tehachapi Mountains. The occurrence of this wind flow is almost 70% of the time in summer, but less than 20% of the time in winter. Winter and fall are characterized by mostly light and variable wind flow. Pacific storm systems do bring southerly flows to the valley during late fall and winter. Light and variable winds, less than 10 miles per hour (mph), are common in the colder months.

Superimposed on this seasonal regime is the diurnal wind cycle. In the Valley, this cycle takes the form of a combination of a modified sea breeze-land breeze and mountain-valley regimes. The sea breeze-land breeze regime typically has a modified sea breeze flowing into the Valley from the north during the late day and evening and then a land breeze flowing out of the Valley late at night and early in the morning. The mountain-valley regime has an upslope (mountain) flow during the day and a down slope (valley) flow at night. These effects create a complexity of regional wind flow and pollutant transport within the Valley.

The pollution potential of the San Joaquin Valley is very high. The San Joaquin Valley has one of the most severe air pollution problems in the State and the Country. Surrounding elevated terrain in conjunction with temperature inversions frequently restrict lateral and vertical dilution of pollutants. Abundant sunshine and warm temperatures in late spring, summer, and early fall are ideal conditions for the formation of ozone, where the Valley frequently experiences unhealthy air pollution days. Low wind speeds, combined with low inversion layers in the winter, create a climate conducive to high respirable particulate matter ( $PM_{10}$ ) concentrations and elevated carbon monoxide (CO) levels.

# **REGULATORY SETTING**

The Federal and California Clean Air Acts have established ambient air quality standards for different pollutants. National ambient air quality standards (NAAQS) were established by the Federal Clean Air Act of 1970 (amended in 1977 and 1990) for six "criteria" pollutants. These criteria pollutants now include carbon monoxide (CO), ozone (O<sub>3</sub>), nitrogen dioxide (NO<sub>2</sub>), respirable particulate matter with a diameter less than 10 microns (PM<sub>10</sub>), sulfur dioxide (SO<sub>2</sub>), and lead (Pb). In 1997, the Environmental Protection Agency (EPA) added fine particulate matter (PM<sub>2.5</sub>) as a criteria pollutant. The air pollutants for which standards have been established are considered the most prevalent air pollutants that are known to be hazardous to human health. California ambient air quality standards (CAAQS) include the NAAQS pollutants and also hydrogen sulfide, sulfates, vinyl chloride, and visibility reducing particles. These additional CAAQS pollutants tend to have unique sources and are not typically examined in environmental air quality assessments. In addition, lead concentrations have decreased dramatically since it was removed from motor vehicle fuels.

#### Federal Regulations

At the federal level, the United States Environmental Protection Agency (US EPA) administers and enforces air quality regulations. Federal air quality regulations were developed primarily from

implementation of the Federal Clean Air Act. If an area does not meet NAAQS over a set period (three years), EPA designates it as a "nonattainment" area for that particular pollutant. EPA requires states that have areas that do not comply with the national standards to prepare and submit air quality plans showing how the standards would be met. If the states cannot show how the standards would be met, then they must show progress toward meeting the standards. These plans are referred to as the State Implementation Plan (SIP). Under severe cases, EPA may impose a federal plan to make progress in meeting the federal standards.

EPA also has programs for identifying and regulating hazardous air pollutants. The Clean Air Act requires EPA to set standards for these pollutants and sharply reduce emissions of controlled chemicals. Industries were classified as major sources if they emitted certain amounts of hazardous air pollutants. The US EPA also sets standards to control emissions of hazardous air pollutants through mobile source control programs. These include programs that reformulated gasoline, national low emissions vehicle standards, Tier 2 motor vehicle emission standards, gasoline sulfur control requirements, and heavy-duty engine standards.

The San Joaquin Valley Air Basin is subject to major air quality planning programs required by the federal Clean Air Act (CAA) (1977, last amended in 1990, 42 United States Code [USC] 7401 *et seq.*) to address ozone, particulate matter air pollution, and carbon monoxide. The CAA requires that regional planning and air pollution control agencies prepare a regional Air Quality Plan to outline the measures by which both stationary and mobile sources of pollutants can be controlled in order to achieve all standards within the deadlines specified in the Clean Air Act. These plans are submitted to the State, which after approval, submits them to US EPA as the State Implementation Plan (SIP).

#### State Regulations

The California Clean Air Act of 1988, amended in 1992, outlines a program for areas in the State to attain the CAAQS by the earliest practical date. The California Air Resources Board (CARB) is the state air pollution control agency and is a part of the California EPA. The California Clean Air Act (CCAA) sets more stringent air quality standards for all of the pollutants covered under national standards, and additionally regulates levels of vinyl chloride, hydrogen sulfide, sulfates, and visibility-reducing particulates. If an area does not meet CAAQS, CARB designates the area as a nonattainment area. The San Joaquin Valley Air Basin does not meet the CAAQS for ozone, PM<sub>10</sub>, and PM<sub>2.5</sub>. CARB requires regions that do not meet CAAQS for ozone to submit clean air plans that describe plans to attain the standard or show progress toward attainment.

In addition to the US EPA, CARB further regulates the amount of air pollutants that can be emitted by new motor vehicles sold in California. Motor vehicle emissions standards have always been more stringent than federal standards since they were first imposed in 1961. CARB has also developed Inspection and Maintenance (I/M) and "Smog Check" programs with the California Bureau of Automotive Repair. Inspection programs for trucks and buses have also been implemented. CARB also sets standards for motor vehicle fuels sold in California.

#### San Joaquin Valley

The San Joaquin Valley Air Pollution Control District (SJVAPCD) is made up of eight counties in California's Central Valley: San Joaquin, Stanislaus, Merced, Madera, Fresno, Kings, Tulare and the San Joaquin Valley portion of Kern. The primary role of the SJVAPCD is to develop plans

and implement control measures in the San Joaquin Valley to control air pollution. These controls primarily affect stationary sources such as industry and power plants. Rules and regulations have been developed by SJVAPCD to control air pollution from a wide range of air pollution sources. In March 2007, an Indirect Source Review (ISR) rule was adopted that controls air pollution from new land developments. SJVAPCD also conducts public education and outreach efforts such as the Spare the Air, Wood Burning, and Smoking Vehicle voluntary programs.

### NATIONAL AND STATE AMBIENT AIR QUALITY STANDARDS

The CAA and CCAA promulgate, respectively, national and state ambient air quality standards. Air quality standards have been established by US EPA (i.e., NAAQS) and California (i.e., CAAQS) for specific air pollutants most pervasive in urban environments. The NAAQS and CAAQS are shown in Table 1. Ambient standards specify the concentration of pollutants to which the public may be exposed without adverse health effects. Individuals vary widely in their sensitivity to air pollutants, and standards are set to protect more pollution-sensitive populations (e.g., children and the elderly). National and state standards are reviewed and updated periodically based on new health studies. California ambient standards tend to be at least as protective as national ambient standards and are often more stringent. For planning purposes, regions like the San Joaquin Valley Air Basin are given an air quality status designation by the federal and state regulatory agencies. Areas with monitored pollutant concentrations that are lower than ambient air quality standards are designated "attainment" on a pollutant-by-pollutant basis. When monitored concentrations exceed ambient standards within an air basin, it is designated "nonattainment" for that pollutant. US EPA designates areas as "unclassified" when insufficient data are available to determine the attainment status; however, these areas are typically considered to be in attainment of the standard.

# CRITERIA AIR POLLUTANTS AND THEIR HEALTH EFFECTS

The primary criteria air pollutants emitted by the proposed Project include ozone (O<sub>3</sub>) precursors (NO<sub>x</sub> and ROG), carbon monoxide (CO), and suspended particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>). Other criteria pollutants, such as lead (Pb) and sulfur dioxide (SO<sub>2</sub>), would not be substantially emitted by the proposed Project or Project traffic, and air quality standards for them are being met throughout the San Joaquin Valley Air Basin.

| Pollutant                                                                                                                      | Averaging Time                                   | California<br>Standards<br>Concentration | National Standards<br>Concentration                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Ozone                                                                                                                          | 1-hour                                           | 0.09 ppm (180 µg/m <sup>3</sup> )        | —                                                                                                            |
|                                                                                                                                | 8-hour                                           | 0.070 ppm (137 µg/m <sup>3</sup> )       | 0.070 ppm (137 µg/m <sup>3</sup> )<br>(3-year average of annual 4 <sup>th</sup><br>highest daily maxima)     |
| Carbon Monoxide                                                                                                                | 8-hour                                           | 9.0 ppm (10,000 μg/m <sup>3</sup> )      | 9 ppm (10,000 μg/m <sup>3</sup> )                                                                            |
|                                                                                                                                | 1-hour                                           | 20 ppm (23,000 µg/m <sup>3</sup> )       | 35 ppm (40,000 μg/m <sup>3</sup> )                                                                           |
| Nitrogen dioxide                                                                                                               | Annual Average                                   | 0.030 ppm (57 µg/m <sup>3</sup> )        | 0.053 ppm (100 μg/m <sup>3</sup> )                                                                           |
|                                                                                                                                | 1-hour                                           | 0.18 ppm (339 μg/m <sup>3</sup> )        | 0.100 ppm (188 µg/m <sup>3</sup> )<br>(3-year average of annual<br>98 <sup>th</sup> percentile daily maxima) |
| Sulfur dioxide                                                                                                                 | Annual                                           | -                                        | Not applicable in SJV                                                                                        |
|                                                                                                                                | 24-hour                                          | 0.04 ppm (105 µg/m <sup>3</sup> )        | Not applicable in SJV                                                                                        |
|                                                                                                                                | 3-hour                                           | _                                        | 0.5 ppm (1,300 μg/m <sup>3</sup> )                                                                           |
|                                                                                                                                | 1-hour                                           | 0.25 ppm (655 μg/m <sup>3</sup> )        | 0.075 ppm (196 µg/m <sup>3</sup> )<br>(3-year average of annual<br>99 <sup>th</sup> percentile daily maxima) |
| Respirable particulate                                                                                                         | 24-hour                                          | 50 µg/m <sup>3</sup>                     | 150 µg/m <sup>3</sup>                                                                                        |
| matter (10 micron)                                                                                                             | Annual Arithmetic Mean                           | 20 µg/m <sup>3</sup>                     | —                                                                                                            |
| Fine particulate matter                                                                                                        | Annual Arithmetic Mean                           | 12 µg/m <sup>3</sup>                     | $12.0 \mu\text{g/m}^3$ (3-year average)                                                                      |
| (2.5 micron)                                                                                                                   | 24-hour                                          |                                          | 35 μg/m <sup>3</sup><br>(3-year average of annual<br>98 <sup>th</sup> percentile daily<br>concentrations)    |
| Sulfates                                                                                                                       | 24-hour                                          | 25 μg/m <sup>3</sup>                     | _                                                                                                            |
| Lead                                                                                                                           | 30-day                                           | 1.5 μg/m <sup>3</sup>                    | —                                                                                                            |
|                                                                                                                                | 3 Month Rolling Average                          | _                                        | 0.15 µg/m <sup>3</sup>                                                                                       |
| Source: CARB website,<br>SO <sub>2</sub> Federal 24 hour and<br>$\mu$ g/m <sup>3</sup> = micrograms p<br>ppm = parts per milli | l annual standards are not app<br>er cubic meter | blicable in the SJVAPCD.                 |                                                                                                              |

 TABLE 1
 Ambient Air Quality Standards<sup>2</sup>

\_\_\_\_\_

<sup>&</sup>lt;sup>2</sup> Source: California Air Resources Board (http://www.arb.ca.gov)

#### Ozone (O<sub>3</sub>)

While  $O_3$  serves a beneficial purpose in the upper atmosphere (stratosphere) by reducing ultraviolet radiation potentially harmful to humans, when it reaches elevated concentrations in the lower atmosphere it can be harmful to the human respiratory system and to sensitive species of plants.  $O_3$  concentrations build to peak levels during periods of light winds, bright sunshine, and high temperatures. Research has shown that exposure to ozone damages the alveoli (the individual air sacs in the lung where the exchange of oxygen and carbon dioxide between the air and blood takes place). Ozone is a strong irritant that attacks the respiratory system, leading to the damage of lung tissue. Short-term  $O_3$  exposure can reduce lung function in children, make persons susceptible to respiratory distress. Long-term exposure can impair lung defense mechanisms and lead to emphysema and chronic bronchitis. A healthy person exposed to high concentrations may become nauseated or dizzy, may develop headache or cough, or may experience a burning sensation in the chest. Sensitivity to  $O_3$  varies among individuals, but about 20 percent of the population is sensitive to  $O_3$ , with exercising children being particularly vulnerable.

 $O_3$  is formed in the atmosphere by a complex series of photochemical reactions that involve "ozone precursors" that are two families of pollutants: oxides of nitrogen (NO<sub>x</sub>) and reactive organic gases (ROG). NO<sub>x</sub> and ROG are emitted from a variety of stationary and mobile sources. While NO<sub>2</sub>, an oxide of nitrogen, is another criteria pollutant itself, ROGs are not in that category, but are included in this discussion as O<sub>3</sub> precursors. Recently, CARB adopted an 8-hour health based standard for O<sub>3</sub> of 0.070 ppm. More recently, US EPA revised the 8-hour NAAQS for O<sub>3</sub> from 0.08 ppm to 0.075 ppm.

#### Carbon Monoxide (CO)

CO is a colorless, odorless, poisonous gas. Carbon monoxide's health effects are related to its affinity for hemoglobin in the blood. Exposure to high concentrations of CO reduces the oxygencarrying capacity of the blood and can cause dizziness and fatigue, and causes reduced lung capacity, impaired mental abilities and central nervous system function, and induces angina in persons with serious heart disease. Primary sources of CO in ambient air are passenger cars, lightduty trucks, and residential wood burning. The monitored CO levels in the Valley during the last 10 years have been well below ambient air quality standards.

#### Nitrogen Dioxide (NO2)

The major health effect from exposure to high levels of  $NO_2$  is the risk of acute and chronic respiratory disease.  $NO_2$  is a combustion by-product, but it can also form in the atmosphere by chemical reaction.  $NO_2$  is a reddish-brown colored gas often observed during the same conditions that produce high levels of  $O_3$  and can affect regional visibility.  $NO_2$  is one compound in a group of compounds consisting of oxides of nitrogen ( $NO_x$ ). As described above,  $NO_x$  is an  $O_3$  precursor compound. Monitored levels of  $NO_2$  in the Valley are below ambient air quality standards.

#### Particulate Matter (PM)

Respirable particulate matter ( $PM_{10}$ ) and fine particulate matter ( $PM_{2.5}$ ) consist of particulate matter that is 10 microns or less in diameter and 2.5 microns or less in diameter, respectively.  $PM_{10}$  and  $PM_{2.5}$  represent fractions of particulate matter that can be inhaled and cause adverse health effects.  $PM_{10}$  and  $PM_{2.5}$  are a health concern, particularly at levels above the Federal and

State ambient air quality standards. PM<sub>2.5</sub> (including diesel exhaust particles) is thought to have greater effects on health because minute particles are able to penetrate to the deepest parts of the lungs. Scientific studies have suggested links between fine particulate matter and numerous health problems including asthma, bronchitis, acute and chronic respiratory symptoms such as shortness of breath and painful breathing. Children are more susceptible to the health risks of PM<sub>2.5</sub> because their immune and respiratory systems are still developing. These fine particulates have been demonstrated to decrease lung function in children. Certain components of PM are linked to higher rates of lung cancer. Very small particles of certain substances (e.g., sulfates and nitrates) can also directly cause lung damage or can contain absorbed gases (e.g., chlorides or ammonium) that may be injurious to health.

Particulate matter in the atmosphere results from many kinds of dust- and fume-producing industrial and agricultural operations, fuel combustion, and atmospheric photochemical reactions. Some sources of particulate matter, such as mining and demolition and construction activities, are more local in nature, while others, such as vehicular traffic, have a more regional effect. In addition to health effects, particulates also can damage materials and reduce visibility. Dust comprised of large particles (diameter greater than 10 microns) settles out rapidly and is more easily filtered by human breathing passages. This type of dust is considered more of a soiling nuisance rather than a health hazard.

In 1983, CARB replaced the standard for "suspended particulate matter" with a standard for suspended PM<sub>10</sub> or "respirable particulate matter." This standard was set at 50 micrograms per cubic meter ( $\mu$ g/m<sup>3</sup>) for a 24-hour average and 30  $\mu$ g/m<sup>3</sup> for an annual average. CARB revised the annual PM<sub>10</sub> standard in 2002, pursuant to the Children's Environmental Health Protection Act. The revised PM<sub>10</sub> standard is 20  $\mu$ g/m<sup>3</sup> for an annual average. PM<sub>2.5</sub> standards were first promulgated by the EPA in 1997 and were since revised to lower the 24-hour PM<sub>2.5</sub> standard to 35  $\mu$ g/m<sup>3</sup> for 24-hour exposures. That same action by EPA and revoked the annual PM<sub>10</sub> standard due to lack of scientific evidence correlating long-term exposures of ambient PM<sub>10</sub> with health effects. CARB has only adopted an annual average PM<sub>2.5</sub> standard, which is set at 12  $\mu$ g/m<sup>3</sup>. This is equal to the NAAQS of 12  $\mu$ g/m<sup>3</sup>.

# TOXIC AIR CONTAMINANTS

Besides the "criteria" air pollutants, there is another group of substances found in ambient air referred to as Hazardous Air Pollutants (HAPs) under the Federal Clean Air Act and Toxic Air Contaminants (TACs) under the California Clean Air Act. These contaminants tend to be localized and are found in relatively low concentrations in ambient air. However, they can result in adverse chronic health effects if exposure to low concentrations occurs for long periods. They are regulated at the local, state, and federal level.

HAPs are the air contaminants identified by US EPA as known or suspected to cause cancer, serious illness, birth defects, or death. Many of these contaminants originate from human activities, such as fuel combustion and solvent use. Mobile source air toxics (MSATs) are a subset of the 188 HAPS. Of the 21 HAPs identified by EPA as MSATs, a priority list of six priority HAPs were identified that include: diesel exhaust, benzene, formaldehyde, acetaldehyde, acrolein,

and 1,3-butadiene. While vehicle miles traveled in the United States is expected to increase by 64% over the period 2000 to 2020, emissions of MSATs are anticipated to decrease substantially as a result of efforts to control mobile source emissions (by 57% to 67% depending on the contaminant)<sup>3</sup>.

California developed a program under the Tanner Toxics Act (Assembly Bill [AB] 1807) to identify, characterize and control TACs. Subsequently, AB 2728 incorporated all 188 HAPs into the AB 1807 process. TACs include all HAPs plus other containments identified by CARB. These are a broad class of compounds known to cause morbidity or mortality (cancer risk). TACs are found in ambient air, especially in urban areas, and are caused by industry, agriculture, fuel combustion, and commercial operations (e.g., dry cleaners). TACs are typically found in low concentrations, even near their source (e.g., diesel particulate matter near a freeway). Because chronic exposure can result in adverse health effects, TACs are regulated at the regional, state, and federal level.

Particulate matter from diesel exhaust is the predominant TAC in urban air and is estimated to represent about 70 percent of the cancer risk from TACs (based on the statewide average). According to CARB, diesel exhaust is a complex mixture of gases, vapors and fine particles. This complexity makes the evaluation of health effects of diesel exhaust a complex scientific issue. Some chemicals in diesel exhaust, such as benzene and formaldehyde, have been previously identified as TACs by ARB, and are listed as carcinogens either under State Proposition 65 or under the Federal Hazardous Air Pollutants programs.

CARB reports that recent air pollution studies have shown an association that diesel exhaust and other cancer-causing toxic air contaminants emitted from vehicles are responsible for much of the overall cancer risk from TACs in California. Particulate matter emitted from diesel-fueled engines (diesel particulate matter [DPM]) was found to comprise much of that risk. In August 1998, CARB formally identified DPM as a TAC. Diesel particulate matter is of particular concern since it can be distributed over large regions, thus leading to widespread public exposure. The particles emitted by diesel engines are coated with chemicals, many of which have been identified by EPA as HAPs, and by CARB as TACs. Diesel engines emit particulate matter at a rate about 20 times greater than comparable gasoline engines. The vast majority of diesel exhaust particles (over 90 percent) consist of PM<sub>2.5</sub>, which are the particles that can be inhaled deep into the lung. Like other particles of this size, a portion will eventually become trapped within the lung possibly leading to adverse health effects. While the gaseous portion of diesel exhaust also contains TACs, CARB's 1998 action was specific to DPM, which accounts for much of the cancer-causing potential from diesel exhaust. California has adopted a comprehensive diesel risk reduction program to reduce DPM emissions 85 percent by 2020. The U.S. EPA and CARB adopted low sulfur diesel fuel standards in 2006 that reduce diesel particulate matter substantially. Between 2006 and 2012, statewide ambient DPM concentrations were reduced almost 50 percent<sup>4</sup>.

Smoke from residential wood combustion can be a source of TACs. Wood smoke is typically emitted during wintertime when dispersion conditions are poor. Localized high TAC concentrations can result when cold stagnant air traps smoke near the ground and, with no wind;

<sup>&</sup>lt;sup>3</sup> Federal Highway Administration, 2006. <u>Interim Guidance on Air Toxic Analysis in NEPA Documents</u>.

the pollution can persist for many hours, especially in sheltered valleys during winter. Wood smoke also contains a significant amount of  $PM_{10}$  and  $PM_{2.5}$ . Wood smoke is an irritant and is implicated in worsening asthma and other chronic lung problems.

Exposure to TACs is usually evaluated in terms of health risk or cancer risk. For cancer health effects, the risk is expressed as the number of chances in a population of a million people who might be expected to get cancer over a 70-year lifetime Based on CARB's 2012 estimates of statewide exposure, DPM is estimated to increase statewide cancer risk by 520 cancers per million residents exposed over a lifetime<sup>4</sup>.

# **EXISTING AIR QUALITY**

As previously discussed, the San Joaquin Valley experiences poor air quality conditions, due primarily to elevated levels of ozone and particulate matter. CARB, in cooperation with SJVAPCD, monitors air quality throughout the San Joaquin Valley Air Basin. Monitoring data presented in Table 2 was derived for each pollutant based upon the closest monitoring station to the project site. Ozone standards are exceeded on about 40 to 53 days annually. On an annual basis, the PM2.5 standards are exceed on an estimated 25 to 34 days and PM10 standards are exceeded 121 to 139 days (note that these pollutants are measured every sixth day).

| Pollutant                 | Standard        | Monitored Values |       |       |  |  |
|---------------------------|-----------------|------------------|-------|-------|--|--|
| Ponutant                  | Stanuaru        | 2014             | 2015  | 2016  |  |  |
| Ozone (ppm)               | State 1-Hour    | 0.108            | 0.119 | 0.097 |  |  |
| Ozone (ppm)               | State 8-Hour    | 0.095            | 0.094 | 0.088 |  |  |
| Ozone (ppm)               | Federal 8-Hour  | 0.094            | 0.094 | 0.088 |  |  |
| $PM_{10}(ug/m3)$          | Federal 24-Hour | 131              | 137   | 152   |  |  |
| $PM_{10}(ug/m3)$          | State 24-Hour   | 126              | 109   | 110   |  |  |
| PM <sub>2.5</sub> (ug/m3) | Federal 24-Hour | 96.7             | 98.2  | 59.7  |  |  |
| Carbon Monoxide           | State/Federal   |                  |       |       |  |  |
| (ppm)                     | 8-Hour          | ND               | ND    | ND    |  |  |
| Nitrogen Dioxide<br>(ppb) | State 1-Hour    | 50               | 51    | 52    |  |  |

TABLE 2Summary of Criteria Air Pollution Monitoring Data for Kings County<sup>5</sup>

Note: (1) Monitored values are the high values considering the form of the applicable standard.

#### <u>Ozone</u>

In California, ozone concentrations are generally lower near the coast than inland. The inland regions, such as the San Joaquin Valley, typically experience some of the higher ozone concentrations. This is because of the greater frequency of hot days and stagnant conditions that are conducive to ozone formation. Some areas of the Valley lie downwind of urban areas that are a source of ozone precursor pollutants.

<sup>&</sup>lt;sup>4</sup> California Air Resources Board - Overview: Diesel Exhaust and Health. (<u>www.arb.gov/research/diesel/diesel-</u>health.htm )

<sup>&</sup>lt;sup>5</sup>California Air Resources Board - Air Quality Data Statistics (http://www.arb.ca.gov/adam/welcome.html)

#### Particulate Matter (PM<sub>2.5</sub> and PM<sub>10</sub>)

Most areas of California have either 24-hour or annual PM<sub>10</sub> concentrations that exceed the State standards. Most urban areas exceed the State annual standard and the 2006 24-hour federal standard. In the San Joaquin Valley, there is a strong seasonal variation in PM, with higher PM<sub>10</sub> and PM<sub>2.5</sub> concentrations in the fall and winter months. These higher concentrations are caused by increased activity for some emission sources and meteorological conditions that are conducive to the build-up of particulate matter. Industry and motor vehicles consistently emit particulate matter. Seasonal sources of particulate matter in San Joaquin Valley include wildfires, agricultural activities, windblown dust, and residential wood burning. In California, area sources, which are primarily fugitive dust, account for the majority of directly emitted particulate matter. This includes dust from paved and unpaved roads. CARB estimates that 85 percent of directly emitted PM<sub>10</sub> and 66 percent of directly emitted PM<sub>2.5</sub> is from area sources. During the winter, the PM<sub>2.5</sub> size fraction makes up much of the total particulate matter concentrations. The major contributor to high levels of ambient PM<sub>2.5</sub> is the secondary formation of particulate matter caused by the reaction of NO<sub>x</sub> and ammonium to form ammonium nitrate. CARB estimates that the secondary portion of PM<sub>2.5</sub> makes up about 50 percent of the annual concentrations in the San Joaquin Valley<sup>6</sup>. The San Joaquin Valley also records high PM<sub>10</sub> levels during the fall. During this season, both the coarse fraction (from dust) and the PM2.5 fraction result in elevated PM2.5 and PM10 concentrations.

#### Carbon Monoxide

State and federal standards for carbon monoxide are met throughout California as a result of cleaner vehicles and fuels that were reformulated in the 1990s. For CO, the monitored value used was the air basin average data, as this value most likely represents the average air quality in the project area.

#### Other Pollutants

Air monitoring data indicate that the San Joaquin Valley meets ambient air quality standards all other air pollutants.

#### Air Quality Trends

Air quality in the Valley has improved significantly despite a natural low capacity for pollution, created by unique geography, topography, and meteorology. Emissions have been reduced at a rate similar or better than other areas in California. Since 1990, emissions of ozone precursors (i.e., NO<sub>x</sub> and ROG) have been reduced by 40% or greater, resulting in much fewer days where ozone standards have been exceeded. Direct emissions of PM<sub>10</sub> and PM<sub>2.5</sub> have been reduced by 10% to 13%. As a result, the San Joaquin Valley is the first air basin classified as "serious nonattainment" under the NAAQS to come into attainment of the PM<sub>10</sub> standards.

# ATTAINMENT STATUS

Areas that do not violate ambient air quality standards are considered to have attained the standard. Violations of ambient air quality standards are based on air pollutant monitoring data and are

<sup>&</sup>lt;sup>6</sup> CARB. 2009. <u>The California Almanac of Emissions and Air Quality</u>. See

http://www.arb.ca.gov/aqd/almanac/almanac09/almanac09.htm

judged for each air pollutant. The San Joaquin Valley as a whole does not meet State or federal ambient air quality standards for ground level  $O_3$  and State standards for  $PM_{10}$  and  $PM_{2.5}$ . The attainment status for the Valley with respect to various pollutants of concern is described in Table 3.

| Pollutant                           | Federal Status          | State Status            |
|-------------------------------------|-------------------------|-------------------------|
| Ozone (O <sub>3</sub> ) – 1-Hour    | No Designation          | Severe Nonattainment    |
| Standard                            |                         |                         |
| Ozone $(O_3) - 8$ -Hour             | Extreme Nonattainment   | Nonattainment           |
| Standard                            |                         |                         |
| Respirable Particulate Matter       | Attainment-Maintenance  | Nonattainment           |
| (PM <sub>10</sub> )                 |                         |                         |
| Fine Particulate Matter             | Nonattainment           | Nonattainment           |
| (PM <sub>2.5</sub> )                |                         |                         |
| Carbon Monoxide (CO)                | Attainment/Unclassified | Attainment/Unclassified |
| Nitrogen Dioxide (NO <sub>2</sub> ) | Attainment/Unclassified | Attainment              |
|                                     |                         |                         |
| Sulfur Dioxide (SO <sub>2</sub> )   | Attainment/Unclassified | Attainment              |
| Sulfates and Lead                   | No Designation          | Attainment              |
|                                     | NO Designation          |                         |
| Hydrogen Sulfide                    | No Designation          | Unclassified            |
| Visibility Reducing Particles       | No Designation          | Unclassified            |

 TABLE 3
 Project Area Attainment Status

Under the Federal Clean Air Act, the US EPA has classified the region as *extreme nonattainment* for the 8-hour O<sub>3</sub> standard. On March 19, 2008, the US Environmental Protection Agency posted a final rule in the Federal Register affirming the agency's October 30, 2006 determination that the Valley has attained the NAAQS for PM<sub>10</sub>. The Valley is designated *nonattainment* for the older 1997 PM<sub>2.5</sub> NAAQS. SJVAPCD has determined, based on the 2004-06 PM<sub>2.5</sub> data, that the Valley has attained the 1997 24-Hour PM<sub>2.5</sub> standard; however, US EPA recently designated the Valley as nonattainment for the newer 2006 24-hour PM<sub>2.5</sub> standard. The US EPA classifies the region as *attainment* or *unclassified* for all other air pollutants, which include CO and NO<sub>2</sub>.

At the State level, the region is considered *severe non-attainment* for ground level  $O_3$  and *non-attainment* for PM<sub>10</sub> and PM<sub>2.5</sub>. California ambient air quality standards are more stringent than the national ambient air quality standards. The region is required to adopt plans on a triennial basis that show progress towards meeting the State  $O_3$  standard. The area is considered attainment or unclassified for all other pollutants.

# **REGIONAL AIR QUALITY PLANS**

In response to not meeting the NAAQS, the region is required to submit attainment plans to US EPA through the State, which are referred to as State Implementation Plans (SIP).

CARB submitted the 2004 Extreme Ozone Attainment Demonstration Plan to EPA in 2004, which addressed the old 1-hour NAAQS. The region's 2007 Ozone Plan, addressing the 8-hour ozone NAAQS, was submitted to US EPA and approved in March 2012. That plan predicts attainment of the standard throughout 90 percent of the district by 2020 and the entire district by 2024. To accomplish these goals, the plan would reduce NO<sub>x</sub> emissions further by 75 percent and ROG emissions by 25 percent. A wide variety of control measures are included in these plans, such as reducing or offsetting emissions from construction and traffic associated with land use developments. The air basin was recently designated as an extreme ozone nonattainment area for the more stringent 2008 8-hour ozone NAAQS. The plan to address this standard is expected to be due to EPA in 2016. Addressing the 2008 8-hour ozone standard will pose a tremendous challenge for the Valley, given the naturally high background ozone levels and ozone transport into the Valley.

On April 25, 2008, US EPA proposed to approve the 2007  $PM_{10}$  Maintenance Plan and Request for Redesignation. The region now meets the NAAQS for  $PM_{10}$ . US EPA has designated the basin as Attainment.

The SJVAPCD adopted the 2012 PM<sub>2.5</sub> Plan on December 20, 2012. This plan was approved by CARB on January 24, 2013. This plan predicts that the Valley will attain the 2006 PM<sub>2.5</sub> NAAQS by the 2019 deadline. The plan uses control measures to reduce NOx, which also leads to fine particulate formation in the atmosphere. The plan incorporates measures to reduce direct emissions of PM<sub>2.5</sub>, including a strengthening of regulations for various SJVAB industries and the general public through new rules and amendments. The plan estimates that the SJVAB will reach the PM<sub>2.5</sub> standard by 2014.

Both the ozone and PM<sub>2.5</sub> plans include all measures (i.e., federal, state and local) that would be implemented through rule making or program funding to reduce air pollutant emissions. Transportation Control Measures (TCMs) are part of these plans. The plans described above addressing ozone also meet the state planning requirements.

# SJVAPCD RULES AND REGULATIONS

The SJVAPCD has adopted rules and regulations that apply to land use projects, such as the WSP solar projects. These are described below.

# SJVAPCD Indirect Source Review Rule

On December 15, 2005, the SJVAPCD adopted the Indirect Source Review Rule (ISR or Rule 9510) to reduce ozone precursor (i.e., ROG and  $NO_x$ ) and PM10 emissions from new land use development projects. The rule is the result of state requirements outlined in the region's portion of the State Implementation Plan (SIP). The SJVAPCD's SIP commitments are contained in the 2004 Extreme Ozone Attainment Demonstration Plan and the 2003 PM<sub>10</sub> Plan. These plans identified the need to reduce PM<sub>10</sub> and NO<sub>x</sub> substantially in order to attain and maintain the ambient air-pollution standards on schedule.

New projects that would generate substantial air pollutant emissions, for which final discretionary approval was granted after March 1, 2006 are subject to this rule. The rule requires projects to

mitigate both construction and operational period emissions by applying the SJVAPCD-approved mitigation measures and paying fees to support programs that reduce emissions. The rule establishes minimum floor areas for various types of development (i.e., commercial, industrial, office, etc.) for which ISR compliance is required. For land uses not specifically identified, such as solar projects, the minimum floor area is 9,000 square feet. Since the WSP solar projects would each exceed 9,000 feet, this rule would be applicable to each WSP solar field. The rule requires mitigated exhaust emissions during construction based on the following levels:

- 20% reduction from unmitigated baseline in total NO<sub>x</sub> exhaust emissions
- 45% reduction from unmitigated baseline in total PM10 exhaust emissions

For operational emissions, Rule 9510 requires the following reductions:

- 33.3% of the total operational NO<sub>x</sub> emissions from unmitigated baseline
- 50% of the total operational PM10 exhaust emissions from unmitigated baseline

Fees apply to the unmitigated portion of the emissions and are based on estimated costs to reduce the emissions from other sources plus expected costs to cover administration of the program. In accordance with the ISR, each WSP solar project will be required to submit an Air Impact Assessment (AIA) to the Air District prior to submittal of the last discretionary permit application to Kings County.

#### <u>Regulation VIII – Fugitive PM<sub>10</sub></u>

SJVAPCD controls fugitive PM<sub>10</sub> through Regulation VIII (Fugitive PM<sub>10</sub> Prohibitions). The purpose of this regulation is to reduce ambient concentrations of PM<sub>10</sub> by requiring actions to prevent, reduce or mitigate anthropogenic (human caused) fugitive dust emissions. This applies to activities such as construction, bulk materials, open areas, paved and unpaved roads, material transport, and agricultural areas. Sources regulated are required to provide dust control plans for Air District approval that meet the regulation requirements. Fees are collected by SJVAPCD to cover costs for reviewing plans and conducting field inspections.

#### SENSITIVE RECEPTORS

"Sensitive receptors" are defined as facilities where sensitive population groups, such as children, the elderly, the acutely ill, and the chronically ill, are likely to be located. These land uses include schools, playgrounds, childcare centers, retirement homes, convalescent homes, hospitals, medical clinics, and residential areas. Worker locations are typically not considered as sensitive receptors. There are several sensitive receptors within one mile of the project boundaries, all of which consist of residences. Immediately adjacent to the WSP plan area, there are about 20 residential dwellings at Shannon Ranch near Lincoln/Gale and Avenal Cutoff, and two residential dwellings at Stone Land Company Ranch along Nevada Avenue, east of Avenal Cutoff Road. The next nearest residences consist of two ranch complexes with a total of 6 dwellings on the east side of Highway 41 near Nevada Avenue. To the northeast, between the Kings River and the east WSP boundary, there is a series of 4 residences along and near 22<sup>nd</sup> Avenue which runs north-south approximately one mile from the WSP boundary. The nearest schools are located at least 3 miles from the WSP Plan Area in Lemoore and Stratford, and the nearest hospital is located 3 miles northeast at Naval Air Station Lemoore.

### **BUFFERS FROM SOURCES OF AIR POLLUTION**

The SJVAPCD and CARB recommend that communities include buffers between sensitive receptors and sources of air toxic contaminant emissions and odors. In April 2005, CARB released the final version of the Air Quality and Land Use Handbook, which is intended to encourage local land use agencies to consider the risks from air pollution prior to making decisions that approve the siting of new sensitive receptors near sources of air pollution. CARB made recommendations regarding the siting of new sensitive land uses near freeways, truck distribution centers, dry cleaners, gasoline dispensing stations, and other air pollution sources. The proposed project does not include any of the type of sources listed by CARB.

# **GREENHOUSE GAS REGULATIONS AND GUIDANCE**

# STATE OF CALIFORNIA

Regulations addressing GHG emissions from land use development projects are primarily driven by the State. AB 32, the Global Warming Solutions Act of 2006, codifies the State of California's GHG emissions target by directing CARB to reduce the state's global warming emissions to 1990 levels by 2020. AB 32 was signed and passed into law by Governor Schwarzenegger on September 27, 2006. Since that time, CARB, the California Energy Commission (CEC), the California Public Utilities Commission (CPUC), and the California Building Standards Commission (CBSC) have all been developing regulations that will help meet the goals of AB 32.

A Scoping Plan for AB 32 was adopted by CARB in December 2008. It contains the State of California's main strategies to reduce GHGs from Business-As-Usual (BAU) emissions projected in 2020 back down to 1990 levels. BAU is the quantification of the projected emissions in 2020, including increases in emissions caused by growth, without any GHG reduction measures. The Scoping Plan has a range of GHG reduction actions, including direct regulations, alternative compliance mechanisms, monetary and non-monetary incentives, voluntary actions, and market-based mechanisms such as a cap-and-trade system. It required CARB and other state agencies to develop and adopt regulations and other initiatives reducing GHGs by 2012.

As directed by AB 32, CARB has also approved a statewide GHG emissions limit. CARB established the amount of 427 MMT of CO<sub>2</sub>e as the total statewide GHG 1990 emissions level and 2020 emissions limit. The limit is a cumulative statewide limit, not a sector- or facility-specific limit. The 2008 Scoping Plan estimated that 2020 Business as Usual (BAU) emissions would be 596 MMT of CO<sub>2</sub>e, indicating that a statewide reduction of 28 percent would be required to achieve 1990 emissions levels. In 2011 CARB revised the 2020 BAU annual emissions forecast downward to 507 MMT of CO<sub>2</sub>e. Thus, an estimated reduction of 80 MMT of CO<sub>2</sub>e (a 16% reduction from the revised 2020 BAU) was determined to be necessary to reduce statewide emissions to meet the AB 32 target by 2020. In April 2015, Governor Brown signed Executive Order EO-B-30-15 which sets a greenhouse gas emissions target at 40 percent of 1990 levels by 2030. On September 8, 2016, Governor Brown signed SB 32, which establishes by statute the

GHG reduction target of 40 percent of 1990 levels by 2030. The CARB is currently updating the AB 32 Scoping Plan to reflect the 2030 target.

# SAN JOAQUIN VALLEY AIR POLLUTION CONTROL DISTRICT

In August 2008, the San Joaquin Valley Air Pollution Control District adopted the Climate Change Action Plan (CCAP). The goals of the CCAP are to establish District processes for assessing the significance of project specific GHG impacts for projects permitted by the District; assist local land use agencies, developers, and the public by identifying and quantifying GHG emission reduction measures for development projects, and by providing tools to streamline evaluation of project specific GHG effects; ensure that collateral emissions from GHG emission reduction projects do not adversely impact public health or environmental justice communities in the Valley; and assist Valley businesses in complying with state law related to GHG emission reduction. In particular, the CCAP directed the District's Air Pollution Control Officer to develop guidance to assist District staff, valley businesses, land use agencies, and other permitting agencies in addressing GHG emissions as part of the CEQA process. Pursuant to this directive, on December 17, 2009, SJVAPCD adopted Guidance for Valley Land-Use Agencies in Addressing GHG Emissions Impacts for New Projects under CEQA (described below). The CCAP also directs District staff to investigate and develop a greenhouse gas banking program, enhance the existing emissions inventory process to include greenhouse gas emissions reporting consistent with new state requirements, and administer voluntary greenhouse gas emission reduction agreements.

#### SJVAPCD's Guidance for Addressing GHG Emissions Impacts Under CEQA

Under its mandate to provide local agencies with assistance in complying with CEQA in climate change matters, SJVAPCD has developed Guidance for Valley Land-Use Agencies in Addressing GHG Emissions Impacts for New Projects under CEQA. As a general principal to be applied in determining whether a proposed project would be deemed to have a less-than-significant impact on global climate change, a project must be determined to have reduced or mitigated GHG emissions by 29 percent relative to Business-As-Usual conditions, consistent with GHG emission reduction targets established in CARB's Scoping Plan for AB 32 implementation. The SJVAPCD guidance is intended to streamline the process of determining if project specific GHG emissions would have a significant effect. The proposed approach relies on the use of performance-based standards and their associated pre-quantified GHG emission reduction effectiveness (Best Performance Standards). Establishing Best Performance Standards (BPS) is intended to help project proponents, lead agencies, and the public by proactively identifying effective, feasible mitigation measures. Emission reductions achieved through implementation of BPS would be prequantified, thus reducing the need for project specific quantification of GHG emissions. For land use development projects, BPS would include emissions reduction credits for such project features as bicycle racks, pedestrian access to public transit, and so forth. Projects implementing a sufficient level of Best Performance Standards would be determined to have a less-than-significant individual and cumulative impact on global climate change and would not require project specific quantification of GHG emissions. For all projects for which the lead agency has determined that an Environmental Impact Report is required, quantification of GHG emissions would be required whether or not the project incorporates Best Performance Standards. SJVAPCD's guidance document does not constitute a rule or regulation, but is intended for use by other agencies in their assessment of the significance of project impacts to global climate change under CEQA.

# **IMPACT ANALYSIS**

# STANDARDS OF SIGNIFICANCE

Appendix G, of the California Environmental Quality Act (CEQA) Guidelines (Environmental Checklist) contains a list of project effects that may be considered significant. The project would result in a significant impact if it would:

- Conflict with or obstruct implementation of the applicable air quality plan;
- Violate any air quality standard or contribute substantially to an existing or projected air quality violation;
- Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is a nonattainment area for an applicable federal or state ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors);
- Expose sensitive receptors to substantial pollutant concentrations;
- Create objectionable odors affecting a substantial number of people;
- Generate greenhouse gas emissions, either directly or indirectly, that may have a significant effect on the environment;
- Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases.

The SJVAPCD has developed the Guide for Assessing and Mitigating Air Quality Impacts (SJVAPCD 2015), also known as the GAMAQI. The following thresholds of significance, as set forth in the SJVAPCD's GAMAQI, are applied to determine whether a proposed project would result in a significant air quality impact:

- 1) <u>Construction Emissions of PM</u>. Construction projects are required to comply with Regulation VIII as listed in the SJVAPCD; however, the size of the project and the proximity to sensitive receptors may warrant additional measures.
- 2) <u>Criteria Air Pollutant Emissions</u>. SJVAPCD's current adopted thresholds of significance for criteria pollutant emissions and their application is presented in Table 4. These thresholds address both construction and operational emissions. Note that the District treats permitted equipment and activities separately.
- 3) <u>Ambient Air Quality</u>. Emissions that are predicted to cause or contribute to a violation of an ambient air quality would be considered a significant impact. SJVAPCD recommends that dispersion modeling be conducted for construction or operation when on-site emissions exceed 100 pounds per day for any criteria pollutant after implementation of all mitigation measures.
- 4) <u>Local CO Concentrations</u>. Traffic emissions associated with the proposed project would be considered significant if the project contributes to CO concentrations at receptor locations in excess of the ambient air quality standards.

- 5) <u>Toxic Air Contaminants or Hazardous Air Pollutants</u>. Exposure to HAPs or TACs would be considered significant if the probability of contracting cancer for the Maximally Exposed Individual would exceed 20 in 1 million or would result in a Hazard Index greater than 1 for non-cancer health effects.
- 6) <u>Odors</u>. Odor impacts associated with the proposed project would be considered significant if the project has the potential to frequently expose members of the public to objectionable odors through development of a new odor source or placement of receptors near an existing odor source.
- 7) <u>GHGs</u>. In SJVAPCD's *Guidance for Valley Land-Use Agencies in Addressing GHG Emissions Impacts for New Projects Under CEQA*, the District recommends that land use development projects demonstrate a 29 percent reduction in GHG emissions from Business-As-Usual (BAU).

|                                        |              | Operational Emissions |               |  |  |  |
|----------------------------------------|--------------|-----------------------|---------------|--|--|--|
|                                        |              | Permitted             | Non-Permitted |  |  |  |
|                                        | Construction | Equipment and         | Equipment and |  |  |  |
| Pollutant/Precursor                    | Emissions    | Activities            | Activities    |  |  |  |
|                                        |              |                       |               |  |  |  |
| Carbon Monoxide (CO)                   | 100          | 100                   | 100           |  |  |  |
| Nitrogen Oxides (NOx)                  | 10           | 10                    | 10            |  |  |  |
| Reactive Organic Gases                 | 10           | 10                    | 10            |  |  |  |
| Sulfur Dioxide (SOx)                   | 27           | 27                    | 27            |  |  |  |
| Particulate Matter – PM10              | 15           | 15                    | 15            |  |  |  |
| Particulate Matter – PM <sub>2.5</sub> | 15           | 15                    | 15            |  |  |  |

TABLE 4SJVAPCD Air Quality Thresholds of Significance – Criteria Pollutant<br/>Emission Levels in tons per year (tpy)

With respect to cumulative air quality impacts, the GAMAQI provides that any proposed project that would individually have a significant air quality impact (i.e., exceed significance thresholds for criteria pollutants ROG, NO<sub>x</sub>, or PM<sub>10</sub>) would also be considered to have a significant cumulative impact (GAMAQI, p. 66). In cases where project emissions are all below the applicable significance thresholds, a project may still contribute to a significant cumulative impact if there are other projects nearby whose emissions would combine with project emissions to result in an exceedance of one or more significance thresholds for criteria pollutants (GAMAQI, p.108).

# AIR QUALITY IMPACTS

Development-related air quality impacts fall into two categories: short-term impacts due to construction, and long-term impacts due to facility operation. During construction, the WSP solar projects would affect local particulate concentrations primarily due to fugitive dust sources and contribute to ozone and PM<sub>10</sub>/PM<sub>2.5</sub> levels due to exhaust emissions. Over the long-term, the operational emissions would result in very slight increases in emissions of ozone precursors such as ROG and NO<sub>x</sub>, primarily due to motor vehicle trips (employee trips, site deliveries and onsite

maintenance activities). As discussed below and as summarized in Table 5, the emissions for construction and comparisons with the applicable significance levels are presented below.

The CalEEMod program was not used to estimate construction related emissions as this model was designed to provide emissions estimates for more standardized residential and commercial land uses and would be inadequate for the purposes of evaluating a Master Plan for a series of solar power development projects. On- and offsite-fugitive dust emissions including on-site fugitives, on-site windblown dust, fugitive dust from paved and unpaved roads, etc., were derived from estimation techniques in EPA AP-42, and the Midwest Research Institute construction dust study (1999), for the Level II analysis scenario. Construction equipment exhaust emissions were estimated using data supplied by the applicant, i.e., types of equipment used, number on site, daily use hours, HP ratings, and emissions factors derived from the SCAQMD Offroad database and EMFAC2014.

**Impact 1**: <u>Construction Dust</u>. Construction activity involves a high potential for the emission of fugitive particulate matter emissions that would affect local air quality. This would be a *potentially significant* impact for construction of Solar Generating Facilities (SGFs) 1 through 12 and (for PM<sub>10</sub>), SGF 2+3 (the period where certain construction activities of both solar projects occur during the same time period but in different locations) for PM<sub>2.5</sub>.

Construction dust (fugitive) emissions for PM10 and PM2.5 are summarized in Table 5. Construction activities would temporarily affect local air quality, causing a temporary increase in particulate dust and other pollutants. Dust emission during periods of construction would increase particulate concentrations at neighboring properties. This impact is potentially significant, but it can be mitigated through compliance with existing SJVAPCD requirements, discussed below.

As stated in the Introduction, the Westlands Solar Park consists of a series of photovoltaic solar power production facilities covering approximately 21,000 acres with a generating capacity of approximately 2000 MWs. The WSP will be developed as twelve (12) separate solar generating facilities (SGFs) with SGF 1 anticipated to begin construction in 2016 and SGF 12 beginning construction in late 2029. Supporting facilities included in WSP consist of two (2) 230kV switchyards. Related to the WSP solar development is the planned construction of 23 miles of gen-tie transmission corridor, including upgrades at the existing PG&E Gates substation.

Grading and site disturbance (e.g., vehicle travel on exposed areas) would likely result in the greatest emissions of dust and  $PM_{10}/PM_{2.5}$ . Windy conditions during construction could cause substantial emissions of  $PM_{10}/PM_{2.5}$ . The estimated dust emissions from construction of the WSP solar projects are shown in Table 5. The table shows emissions of fugitive dust under "uncontrolled" and "controlled" conditions.

#### 

| Project | On-and Off-Site Fugitive Dust Emissions, Ton<br>per Year |                             |  |  |
|---------|----------------------------------------------------------|-----------------------------|--|--|
|         | PM <sub>10</sub> Fugitives                               | PM <sub>2.5</sub> Fugitives |  |  |

|                                          | Uncontrolled | Controlled | Uncontrolled | Controlled |
|------------------------------------------|--------------|------------|--------------|------------|
| Solar Generating Facility                |              |            |              |            |
| (SGF) 1                                  | 13.25        | 3.8        | 2.33         | 0.7        |
| SGF 2                                    | 21.13        | 4.8        | 4.06         | 0.9        |
| South Gen Tie                            | 11.14        | 2.4        | 1.51         | 0.3        |
| Gates Substation                         |              |            |              |            |
| Upgrades                                 | 0.55         | 0.1        | 0.09         | 0.0        |
| Overlap: SGF 2 + South                   |              |            |              |            |
| Gen Tie and Gates                        |              |            |              |            |
| Substation Upgrades <sup>3</sup>         | 33.07        | 7.2        | 7.68         | 1.7        |
| SGF 3                                    | 13.41        | 2.9        | 2.61         | 1.2        |
| Overlap SGF 2+3 <sup>3</sup>             | 31.00        | 6.7        | 2.48         | 0.5        |
| SGF 4                                    | 29.98        | 7.6        | 5.53         | 1.3        |
| SGF 5                                    | 23.27        | 6.7        | 4.08         | 1.4        |
| SGF 6                                    | 22.24        | 5.7        | 4.10         | 1.1        |
| SGF 7                                    | 15.43        | 3.9        | 2.84         | 1.0        |
| SGF 8                                    | 38.02        | 8.5        | 7.33         | 0.7        |
| SGF 9                                    | 34.52        | 8.7        | 6.40         | 1.6        |
| SGF 10                                   | 22.49        | 5.8        | 4.18         | 1.5        |
| SGF 11                                   | 27.16        | 7.3        | 5.07         | 1.0        |
| SGF 12                                   | 17.15        | 4.5        | 3.07         | 1.3        |
| N. WSP 230 kV                            |              |            |              |            |
| Switchyard                               | 1.10         | 0.3        | 1.86         | 0.8        |
| S. WSP 230 kV                            |              |            |              |            |
| Switchyard                               | 1.10         | 0.3        | 0.12         | 0.1        |
| North Gen Tie                            | 11.14        | 2.4        | 1.51         | 0.1        |
| SJVAPCD Significance<br>Thresholds (TPY) | 15           | 15         | 15           | 15         |
| Exceeds Threshold                        | Yes          | No         | Yes          | No         |

The SJVAPCD's GAMAQI emphasizes implementation of effective and comprehensive control measures rather than requiring a detailed quantification of construction emissions. SJVAPCD has adopted a set of PM<sub>10</sub> fugitive dust rules collectively called Regulation VIII. This regulation essentially prohibits the emissions of visible dust (limited to 20-percent opacity) and requires that disturbed areas or soils be stabilized. Compliance with Regulation VIII during the construction phases of the WSP solar projects would be required. Prior to construction of each solar project, the applicant would be required to submit a dust control plan that meets the regulation requirements. These plans are reviewed by SJVAPCD and construction cannot begin until District approval is obtained. The provisions of Regulation VIII and its constituent rules pertaining to construction activities generally require:

- Effective dust suppression (e.g., watering) for land clearing, grubbing, scraping, excavation, land leveling, grading, cut and fill and demolition activities.
- Effective stabilization of all disturbed areas of a construction site, including storage piles, not used for seven or more days.
- Control of fugitive dust from on-site unpaved roads and off-site unpaved access roads.
- Removal of accumulations of mud or dirt at the end of the workday or once every 24 hours from public paved roads, shoulders and access ways adjacent to the site.
- Cease outdoor construction activities that disturb soils during periods with high winds.
- Record keeping for each day dust control measures are implemented.

- Limit traffic speeds on unpaved roads to 15 mph.
- Install sandbags or other erosion control measures to prevent silt runoff to public roadways.
- Landscape or replant vegetation in disturbed areas as quickly as possible.
- Prevent the tracking of dirt on public roadways. Limit access to the construction sites, so tracking of mud or dirt on to public roadways can be prevented. If necessary, use wheel washers for all exiting trucks, or wash off the tires or tracks of all trucks and equipment leaving the site.
- Suspend grading activity when winds (instantaneous gusts) exceed 25 mph or dust clouds cannot be prevented from extending beyond the site.

Based on the provisions of Regulation VIII, the following dust control options were incorporated into the emission estimates for fugitive dust:

- Earthwork/Equipment movement on site were controlled by 84% based on the application of watering 3 times per day
- Limiting speeds to less than 15 mph
- Unpaved road use utilized 80% control via watering 2 times per day
- Unpaved road speeds were limited to 15 mph
- Trackout of dirt was controlled by 84% by utilizing graveled entrances, metal cleaning grates, periodic water washing of the pavement and pavement sweeping between washings

Anyone who prepares or implements a Dust Control Plan must attend a training course conducted by the District. Construction sites are subject to SJVAPCD inspections under this regulation. Compliance with Regulation VIII, including the effective implementation of a Dust Control Plan that has been reviewed and approved by the SJVAPCD, would reduce dust and PM<sub>10</sub>/PM<sub>2.5</sub> emissions to a less than significant level.

Mitigation Measure for Impact 1: None required beyond compliance with SJVAPCD Regulation VIII.

**Impact 2:** <u>Construction Exhaust Emissions.</u> Equipment and vehicle trips associated with construction would emit ozone precursor air pollutants of NO<sub>x</sub> and ROG on a temporary basis. Construction exhaust emissions of NO<sub>x</sub> would exceed the GAMAQI significance thresholds for SGF 2, 3, 4 and 2+3 (overlap period) with the South Gen Tie in and the Gates Substation. For all other WSP solar projects, construction exhaust emissions would be considered a less-than-significant impact.

Construction equipment exhaust affects air quality both locally and regionally. Emissions of diesel particulate matter, a TAC, can affect local air quality. This impact is discussed under Impact 5. Emissions of air pollutants that could affect regional air quality were addressed by estimating emissions and comparing them to the SJVAPCD significance thresholds. Construction equipment exhaust emissions were estimated using data supplied by the applicant, i.e., types of equipment used, number on site, daily use hours, HP ratings, and emissions factors derived from the SCAQMD Offroad database (http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook/off-road-mobile-source-emission-factors). Offsite vehicular emissions were calculated using applicant data for the number of proposed vehicles in use, trip distances, and trips per day, in conjunction with emissions factors from the EMFAC2014 model. On and offsite fugitive dust

emissions including on-site fugitives, on-site windblown dust, fugitive dust from paved and unpaved roads, etc., were derived from estimation techniques in EPA AP-42, and the Midwest Research Institute construction dust study (1999), for the Level II analysis scenario.

Unmitigated construction emissions from all WSP solar and gen-tie projects (on and off-site) are reported in Table 5. SJVAPCD regulations that would apply to construction activities include Rule 4102, regarding creation of a nuisance, Rule 4601 which limits volatile organic compound emissions from architectural coatings, storage and cleanup, and Rule 4641 which limits emissions form asphalt paving materials, and Rule 9510 that applies to indirect sources.

As mentioned, the WSP is planned be developed as 12 separate solar projects, each of which would require its own Conditional Use Permit from Kings County. The project sponsor has calculated the construction and operational inputs for each solar and gen-tie project. Rule 9510 would require that the projects reduce construction exhaust emissions by 20 percent for NO<sub>x</sub> and 45 percent for PM<sub>10</sub> and these reductions would be applied to the unmitigated emissions presented for each project in Table 6. SJVAPCD encourages reductions through on-site mitigation measures. (Note: The use of the term "mitigation" under Rule 9510 does not refer to mitigation of impacts under CEQA, where the goal is to reduce the emissions below the significance thresholds expressed in tons per year. Therefore, application of ISR reductions does not necessarily result in reduction of emission below the CEQA thresholds.)

As shown in Table 6, the CEQA significance thresholds for NOx would be exceeded by the annual construction emission for SGF 1, SGF 2, SGF 3, SGF 5, SGF 6, and SGF 7. (Note: It is anticipated that construction of SGF 2the South Gen Tie, and the Gates Substation upgrades may overlap during 2019. It is also possible that construction of SGFs 2 and 3 may overlap in 2020. Thus additional calculations to reflect these scenarios were included in Table 6 for the assumed years when the construction these project elements would overlap, which is intended to represent the worst-case development intensity periods during the WSP buildout period.) As expected, the CEQA thresholds for NOx for these possible overlapping projects were also exceeded. Since the construction of six of the first seven SGFs would exceed the CEQA significance thresholds for NOx, as shown in Table 6 below, the potential impact would be significant. Construction period emissions of ROG, CO, SO<sub>2</sub>, and PM<sub>10</sub>/PM<sub>2.5</sub> (as exhaust) for all SGFs, gen-ties, switchyards, and substation upgrade projects would be below the thresholds used by SJVAPCD to determine the significance of construction air quality impacts. The PM<sub>10</sub>/PM<sub>2.5</sub> (as fugitive dust) emissions would be mitigated to less-than-significant levels through implementation dust control measures required under SJVAPCD Regulation VIII, as discussed in Impact 1 above.

At the end of the productive lives of the WSP solar facilities, after 25 to 30 years of operation, it is assumed that each SGF would be decommissioned. The activities associated with deconstruction would be comparable to construction, but emissions are expected to be substantially lower due to anticipated reductions in vehicle and equipment emissions over time, and also because of the generally lower intensity of equipment use associated with decommissioning. For even the largest 250 MW solar facilities, emissions are expected to not exceed SJVAPCD significance thresholds for pollutants ROG, CO, SO<sub>2</sub>, NOx, and PM<sub>10</sub>/PM<sub>2.5</sub> (as exhaust). With the application of Regulation VIII dust control requirements, fugitive PM<sub>10</sub> emissions are likewise expected to be below the applicable significance thresholds for the even the largest SGFs, as they are for

construction. Therefore, the emissions associated with SGF decommissioning would be less than significant.

| IABLE 0                                                              | wSP Solar and Gen-Tie Projects – Construction Emissions Summary |       |      |      |                              |                  |               |                  |                   |                |                                         |
|----------------------------------------------------------------------|-----------------------------------------------------------------|-------|------|------|------------------------------|------------------|---------------|------------------|-------------------|----------------|-----------------------------------------|
|                                                                      | On-and Off-Site Construction, Tons per Year <sup>1</sup>        |       |      |      |                              |                  |               |                  |                   |                |                                         |
| Project (order based on construction sequence)                       | NO <sub>x</sub> <sup>1</sup>                                    | со    | ROG  | SOx  | PM10 <sup>2</sup><br>Exhaust | PM10<br>Fugitive | PM10<br>Total | PM2.5<br>Exhaust | PM2.5<br>Fugitive | PM2.5<br>Total | CO <sub>2</sub> e<br>Total <sup>2</sup> |
| Solar Generating Facility (SGF) 1                                    | 11.97                                                           | 7.85  | 1.27 | 0.04 | 0.37                         | 3.79             | 4.16          | 0.37             | 0.65              | 1.02           | 4212                                    |
| SGF 2                                                                | 14.05                                                           | 8.74  | 1.77 | 0.04 | 0.54                         | 4.77             | 5.31          | 0.54             | 0.88              | 1.42           | 4172                                    |
| South Gen Tie                                                        | 9.86                                                            | 5.32  | 1.18 | 0.02 | 0.42                         | 2.36             | 2.78          | 0.42             | 0.32              | 0.74           | 1826                                    |
| Gates Substation Upgrades                                            | 1.27                                                            | 0.96  | 0.21 | 0.01 | 0.03                         | 0.12             | 0.15          | 0.03             | 0.02              | 0.05           | 371                                     |
| Overlap: SGF 2 + South Gen Tie and<br>Gates Substation Upgrades      | 25.43                                                           | 14.99 | 3.16 | 0.07 | 1.03                         | 7.19             | 8.22          | 1.03             | 1.20              | 2.23           | 6347                                    |
| SGF 3                                                                | 12.23                                                           | 6.57  | 1.64 | 0.03 | 0.51                         | 2.90             | 3.41          | 0.51             | 0.54              | 1.05           | 2611                                    |
| Overlap: $SGF 2 + 3$                                                 | 23.53                                                           | 13.60 | 3.06 | 0.06 | 0.95                         | 6.74             | 7.69          | 0.95             | 1.25              | 2.20           | 5969                                    |
| SGF 4                                                                | 9.72                                                            | 10.11 | 1.09 | 0.07 | 0.21                         | 7.63             | 7.85          | 0.21             | 1.35              | 1.56           | 6280                                    |
| SGF 5                                                                | 11.02                                                           | 9.20  | 1.08 | 0.07 | 0.26                         | 6.72             | 6.98          | 0.26             | 1.14              | 1.40           | 6219                                    |
| SGF 6                                                                | 10.65                                                           | 8.88  | 1.28 | 0.05 | 0.32                         | 5.68             | 6.00          | 0.32             | 1.00              | 1.32           | 5081                                    |
| SGF 7                                                                | 12.29                                                           | 11.19 | 2.07 | 0.05 | 0.53                         | 3.94             | 4.47          | 0.53             | 0.69              | 1.22           | 5096                                    |
| SGF 8                                                                | 4.37                                                            | 7.00  | 0.78 | 0.05 | 0.14                         | 8.52             | 8.67          | 0.14             | 1.57              | 1.72           | 4684                                    |
| SGF 9                                                                | 5.60                                                            | 8.97  | 1.00 | 0.07 | 0.19                         | 8.65             | 8.83          | 0.19             | 1.54              | 1.73           | 6168                                    |
| SGF 10                                                               | 4.38                                                            | 7.10  | 0.78 | 0.05 | 0.13                         | 5.76             | 5.89          | 0.13             | 1.02              | 1.16           | 5007                                    |
| SGF 11                                                               | 9.47                                                            | 13.79 | 1.84 | 0.08 | 0.34                         | 7.25             | 7.59          | 0.34             | 1.29              | 1.63           | 7568                                    |
| SGF 12                                                               | 3.44                                                            | 5.31  | 0.65 | 0.04 | 0.11                         | 4.51             | 4.62          | 0.11             | 0.78              | 0.89           | 3316                                    |
| N. WSP 230 kV Switchyard                                             | 0.93                                                            | 0.68  | 0.13 | 0.01 | 0.02                         | 0.29             | 0.31          | 0.02             | 0.05              | 0.08           | 303                                     |
| S. WSP 230 kV Switchyard                                             | 0.72                                                            | 0.66  | 0.10 | 0.01 | 0.02                         | 0.29             | 0.31          | 0.02             | 0.05              | 0.08           | 303                                     |
| North Gen Tie                                                        | 4.42                                                            | 4.52  | 0.70 | 0.02 | 0.15                         | 2.36             | 2.51          | 0.15             | 0.32              | 0.47           | 1786                                    |
| SGF/Substation Water Use                                             |                                                                 |       |      |      |                              |                  |               |                  |                   |                | 518                                     |
| Gen-Tie Line Water Use                                               |                                                                 |       |      |      |                              |                  |               |                  |                   |                | 20                                      |
| SJVAPCD Significance Thresholds (TPY)                                | 10                                                              | 100   | 10   | 27   |                              |                  | 15            |                  |                   | 15             | NA                                      |
| Exceeds Threshold                                                    | Yes                                                             | No    | No   | No   |                              |                  | No            | No               | No                | No             | NA                                      |
| WSP Projects that Exceed Thresholds                                  | SGF 1-<br>3, 5-7                                                | -     | -    | -    |                              |                  |               | -                |                   |                | -                                       |
| Notes: <sup>1</sup> No Reduction for ISR assumed. <sup>2</sup> in me | etric tons                                                      |       |      |      |                              |                  |               |                  |                   |                |                                         |

 TABLE 6
 WSP Solar and Gen-Tie Projects – Construction Emissions Summary

**Mitigation Measure for Impact 2:** The following construction measures shall be implemented during construction of SGFs 1, 2, 3, 5, 6 and 7 and the South Gen Tie to reduce construction NOx emissions to less than 10 tons per year for each project:

- 1. Develop a plan to use construction equipment with low NOx emissions. This may include the use of equipment that meets U.S. EPA Tier 3 and Tier 4 standards. As explained below, the reasonable availability of Tier 4 equipment for this project cannot be assumed at this time, so mitigated emissions were computed based on an assumption that all equipment would at least meet Tier 3 standards which will fully mitigate the significant project emissions. Additional reductions would occur with Tier 4 equipment.
- 2. Minimize Idling Time. Set idling time limit of 5 minutes or less for construction equipment.
- 3. Evaluate the feasibility of a work shuttle or carpool program to reduce emissions from worker travel;
- 4. Evaluate the feasibility of methods to reduce truck travel for delivery of equipment, by reducing the number of necessary truck trips;
- 5. The project proponent is expected to execute a Voluntary Emissions Reduction Agreement (VERA) with SJVAPCD which provides for further reduction of construction NOx to reduce the project's air quality impacts to less-than-significant levels, as determined by the SJVAPCD.

Use of Tier 3 equipment for the significant phases of the SGF construction would reduce the onsite project emissions of NO<sub>x</sub> by about 30 percent. However, off-site vehicle travel also contributes to NOx emissions. Application of Tier 4 equipment would reduce these on-site emissions still further, but were not quantified, since this equipment may not be available for the construction projects, especially for the first few SFGs. (The availability of Tier 4 equipment is dependent upon the sizes and quantities of the construction fleet needed during each phase. As the new Tier 4 equipment replaces the older tiered fleets, the availability is expected to increase over the next five years but was assumed to be minimally available during the development of the first four SGFs.) Additionally, reductions can be implemented through the use of newer or retrofitted construction fleets, a reduction of construction traffic, use of electrical powered stationary equipment, and idling restrictions for equipment and trucks. It is likely that the combined use of Tier 3 and 4 equipment would reduce NOx emissions for SGFs 1, 3, 5, 6 and 7 to less-than-significant levels, but the NOx emissions for SGF 2 (and both of overlap construction combinations listed in Table 6) would remain above the 10-ton per year significance threshold, without the implementation of off-site measures through Voluntary Emission Reduction Agreements (VERAs). (See next paragraph for a description of VERAs.) For purposes of this analysis, it is assumed that each affected SGF applicant within the WSP plan area would execute a VERA with the Air District, as needed following project-specific analysis, to reduce NOx emissions to less-than-significant levels.

In cases where it is not feasible to fully mitigate project emissions through on-site measures, the project proponent and SJVAPCD may enter into a contractual agreement, i.e., Voluntary Emissions Reduction Agreement (VERA), in which the project proponent agrees to mitigate project-specific emissions by providing funds to the SJVAPCD. The SJVAPCD's role is to administer the implementation of the VERA consisting of identifying emissions reductions projects, funding those projects and verifying that emissions reductions have been successfully achieved. The types of emission reduction projects that have been funded in the past include electrification of stationary internal combustion engines (such as agricultural irrigation pumps), replacing old heavy-duty trucks with new, cleaner more efficient heavy duty trucks, and replacement of old farm tractors. The SJVAPCD has been successfully developing and implementing VERA contracts with project proponents since 2005. It is the SJVAPCD's experience that implementation of a VERA is a feasible mitigation measure, which effectively achieves the emission reductions by supplying real and contemporaneous emissions reductions measures (GAMAQI, p. 116-117). Therefore, the implementation of the executed VERAs, in combination with feasible onsite emission reduction measures, would be considered by the SJVAPCD to reduce the construction NOx emissions to acceptable levels (it is assumed that this would include the necessary reductions for the overlapping construction years when combined emissions would be higher, if any construction periods for SGFs and/or other project elements do in fact overlap). Therefore, with the implementation of the above mitigation measures, the air quality impacts of construction emissions by the WSP solar, gen-tie, and substation projects would be less than significant.

**Impact 3:** <u>Operational Emissions.</u> The operational emissions, generated primarily by operations and maintenance activities, would be below GAMAQI significance thresholds. These increases would be *less-than-significant*.

As noted earlier, project construction is expected to begin in 2016 for SGF 1 and end in 2030 for SGF 12. During this period, the construction of the switchyards, gen-tie projects and upgrades to the substations would also occur. The first fully operational year after completion of all SGFs and related projects is expected to be in late 2030 or early 2031.

The effect of the full operations of the WSP solar and gen-tie projects on regional air quality was evaluated by predicting associated emissions for 2031, after all projects are completed and operational. The primary maintenance roads within all SGFs will be graveled with aggregate base, which would reduce fugitive dust associated with maintenance vehicles trips. In addition, all SGF sites will be revegetated with low growing plants to provide stability to the soil surface and reduce wind erosion. The annual emissions associated with the operation of the completed projects are shown in Table 7.

|                                              | Umm             | Chindigated (1)51 Solar Operations Emissions Summary |      |                 |         |           |         |           |                   |  |
|----------------------------------------------|-----------------|------------------------------------------------------|------|-----------------|---------|-----------|---------|-----------|-------------------|--|
|                                              |                 | <b>Operational Emissions – Tons per Year (TPY)</b>   |      |                 |         |           |         |           |                   |  |
|                                              | NO <sub>x</sub> | CO                                                   | ROG  | SO <sub>x</sub> | PM10    | PM10      | PM2.5   | PM2.5     | CO <sub>2</sub> e |  |
|                                              |                 |                                                      |      |                 | Exhaust | Fugitives | Exhaust | Fugitives |                   |  |
| All Site<br>Operations<br>Areas*             | 0.8             | 4.0                                                  | 0.26 | 0.01            | .028    | 5.974     | .026    | .605      | 1069              |  |
| SJVAPCD<br>Significance<br>Thresholds<br>TPY | 10              | 100                                                  | 10   | 27              | 15      | 15        | 15      | 15        | NA                |  |
| Exceeds<br>Threshold                         | No              | No                                                   | No   | No              | No      | No        | No      | No        | No                |  |

 TABLE 7
 Unmitigated WSP Solar Operations Emissions Summary

\* Operations emissions include both on and off-site emissions. Operational emissions associated with the substations and gen-tie lines are expected to be negligible when compared to the solar projects.

Emissions sources include: Worker commutes, site deliveries, onsite vehicle use, onsite portable internal combustion engine use, offsite paved road fugitives, onsite unpaved road fugitives, GHG emissions from water use. Does not include reductions required under ISR.

Based on the implementation of the requirements of SJVAPCD Rule 9510, the SGF operational emissions, generated primarily by mobile sources, would increase emissions, but they would be well below all GAMAQI significance thresholds. These increases would be less-than-significant.

Photovoltaic energy projects do not typically include stationary combustion equipment, so no air emissions are anticipated from these sources. If stationary sources are included, they may require permits from SJVAPCD. Such sources could include combustion emissions from standby emergency generators (rated 50 horsepower or greater). These sources would normally result in minor emissions, compared to those from traffic generation reported above. Sources of stationary air pollutant emissions complying with all applicable SJVAPCD regulations generally will not be considered to have a significant air quality impact. Stationary sources that are exempt from SJVAPCD permit requirements due to low emission thresholds would not be considered to have a significant air quality impact.

As noted, the operational emissions of regional pollutants would not exceed the Air District's CEQA significance thresholds for any pollutant, as shown in Table 7.Therefore, the air quality impacts of operational emissions by the WSP solar, gen-tie, and switching station projects would be less than significant.

**Mitigation Measure for Impact 3:** None Required. However, the project would be subject to SJVAPCD Rule 9510 that would require reductions of operation emissions by 33% for NO<sub>x</sub> and 50% for PM<sub>10</sub>. These reductions would take the form of an offsite mitigation fee payable to SJVAPCD to obtain off-site reductions.

**Impact 4:** Carbon monoxide concentrations from traffic. Mobile emissions generated by WSP traffic would increase carbon monoxide concentrations slightly at intersections in the vicinity. However, resulting concentrations would be below ambient air quality standards, and therefore, considered a *less-than-significant* impact.

Operational traffic generated by WSP projects would increase concentrations of carbon monoxide along roadways providing access to the facilities. Carbon monoxide is a localized air pollutant, where highest concentrations are found very near sources. The major source of carbon monoxide is automobile traffic. Elevated concentrations, therefore, are usually only found near areas of high traffic volume and congestion. The GAMAQI recommends air quality modeling of CO concentrations following the Project-Level Carbon Monoxide Protocol developed by UC Davis.<sup>7</sup>

Emissions and ambient concentrations of CO have decreased greatly in recent years. These improvements are due largely to the introduction of cleaner burning motor vehicles and reformulated motor vehicle fuels. No exceedances of the State or federal CO standards have been recorded at any of San Joaquin Valley's monitoring stations in the past 15 years. The San Joaquin Valley Air Basin has attained the State and National CO standards.

Despite this progress, localized CO concentrations are still a concern in the San Joaquin Valley and are addressed through the SJVAPCD screening method that can be used to determine with fair certainty whether a project's CO emissions at any given intersection would not cause a potential CO hotspot. A project can be said to have a potential to create a CO violation or create a localized hotspot if either of the following conditions are met: level of service (LOS) on one or more streets or intersections would be reduced to LOS E or F; or the project would substantially worsen an already LOS F street or intersection within the project vicinity. All roadways in the vicinity that would be affected by WSP operational traffic currently operate at LOS C or better, and are anticipated to continue doing so after full WSP buildout. Since neither of the threshold conditions would be met, the potential impact on CO would be considered less than significant.

Other local pollutants, such as lead (Pb) and sulfur dioxide (SO<sub>2</sub>) would not be substantially emitted by the project, and air quality standards for them are being met throughout the San Joaquin Valley Air Basin. Since it is evident that the WSP project operations would not result in impacts involving these or other local pollutants, these pollutants are not evaluated in this report.

# Mitigation Measure for Impact 4: None Required

**Impact 5:** Exposure of Sensitive Receptors to Toxic Air Contaminants. Diesel exhaust emissions from construction and operational vehicles and equipment would expose nearby receptors to toxic air contaminants. However, given the relatively minor use of heavy duty equipment for solar project construction, the use of Tier 3 equipment, the limited number of nearby sensitive receptors, the relatively short period of construction emissions that would occur in the vicinity of the sensitive receptors, and the very low intensity of solar operations, the health risks from toxic air contaminants would not be significant. This impact would be *less than significant*.

Diesel particulate matter (DPM) would be emitted from diesel-fueled vehicles and equipment during construction activities and from vehicle traffic attracted by the WSP solar projects while operational. The particulate matter component of diesel exhaust has been classified as a Toxic Air

<sup>&</sup>lt;sup>7</sup> UC Davis. 1998. <u>Project-Level Carbon Monoxide Protocol</u>. Institute of Transportation Studies.

Contaminant (TAC) by CARB based on its potential to cause cancer and other adverse health effects.

The highest daily levels of DPM would be emitted during construction activities from use of heavy-duty diesel equipment such as bulldozers, excavators, loaders, graders and diesel-fueled haul trucks. However, these emissions would be intermittent, vary throughout the WSP plan area, and be of a relatively short duration (about 1-2 years of construction activity for each SGF). In contrast, low-level DPM emissions would result from project operation but they would be constant over the lifetime of the project. Operational DPM emissions could result from the potential use of pickup trucks with a portable water trailer (and pump) which would be used for cleaning solar panels. The panel cleaning is expected to occur four (4) times per year.

DPM emissions from construction activities, in the form of  $PM_{10}$  exhaust, were estimated using the methods discussed above which are based on an estimated schedule for construction activities (grading, and construction) and types of equipment expected to be used. These emissions are reported in Table 5. The total  $PM_{10}$  exhaust construction emissions for any given SGF are very low, with the largest SGFs (250 MW) emitting 0.37 tons per year. This emission rate is very low compared to the SJVAPCD significance threshold of 15 tons per year. Emissions from other vehicles during operations (e.g., employee vehicles and onsite maintenance vehicles) were estimated using emission factors for diesel-fueled vehicles. Those emissions are reported in Table 7. At full WSP buildout, the operations-related  $PM_{10}$  exhaust emissions would total 0.028 tons per year for the entire WSP plan area, which is extremely low compared to the 15 ton per year significance threshold.

Cancer risk, which is the primary adverse effect from exposure to DPM, is based on lifetime exposures. Construction activities would be temporary; however, they could be locally elevated during intense construction activities. (However, given the minimal grading required for solar facilities, the use of heavy earth moving equipment would be relatively low compared to conventional land development projects.) In general, sensitive receptors are not in close proximity to the SGF construction sites. In addition, the construction sites are quite large, so construction activities at any one area would be relatively brief. There are some rural residences near SGF 10, 11 and 12 (i.e., 20 dwellings at Shannon Ranch and 2 dwellings at Stone Land Company Ranch). For construction near these residences, a potential for cancer risk, while unlikely to be significant, would exist. DPM concentrations dissipate rapidly with distance from the source, with concentrations dropping about 80 percent at approximately 1,000 feet from the source. Thus the emissions from construction activity within 1,000 feet of the receptors has the greatest potential to contribute to cancer risk. During construction of SGFs 10, 11, and 12, construction activity would occur within 1,000 feet of the Shannon Ranch complex for a total duration of approximately 3.2 months, compared to a total construction period of about 55 months for the entirety all three nearby SGFs. The total PM<sub>10</sub> exhaust emissions from construction all three of these nearby SGFs would be 1.23 tons, of which approximately 0.07 tons would be generated within 1,000 feet of the Shannon Ranch dwellings. It was noted that the solar PV facilities would require very little grading, so emissions from heavy earthmoving equipment would be relatively low, which is reflected in the low estimated PM<sub>10</sub> exhaust emissions levels. Another factor that reduces potential cancer risk is that, under prevailing wind conditions, the Shannon Ranch is located upwind or crosswind from these three nearest SGFs, so most DPMs are likely to be dispersed away from the ranch instead of toward it. Regarding the two dwellings at the Stone Land Company Ranch, during the 9-month construction period for the nearby SGF 12, construction activity would occur within 1,000 of these residences for about 0.4 months, during which time  $PM_{10}$  exhaust emissions would total approximately 0.01 tons.

In addition, these low emissions of DPM would be reduced substantially by the application of ISR that would reduce construction  $PM_{10}$  emissions by 45 percent (most of which would occur through on-site reductions, as discussed in the mitigation measures for Impact 2 above). Also, since it is anticipated that SGFs 10, 11, and 12 would be constructed toward the end of the WSP buildout period, technical advances in DPM emissions controls for construction equipment are expected to further reduce  $PM_{10}$  emissions at the time of construction.

As noted, operational emissions would be very low given the low intensity nature of solar operations. Also, operational emissions would only occur over a 30-year operational life for each SGF, not an entire 70-year exposure period.

As a point of comparison, a recent HRA conducted on the 400-MW Tranquillity solar project in Fresno County found the lifetime cancer risk for the maximally exposed receptor to be 2.45 in 1 million. The construction and operational characteristics of the Tranquillity solar project are virtually identical to those of the WSP solar development. The Tranquillity solar project has several sensitive receptors located directly adjacent and downwind of the project site, and therefore that project represents a worst-case scenario for health risk assessment of large PV solar projects in the San Joaquin Valley. Since atmospheric conditions at the Tranquillity site are also very similar to those of the WSP plan area, the results of the Tranquillity health risk assessment are fully transferable to WSP solar development. Based on this comparison, it is reasonable to conclude that the increased lifetime cancer risk for the nearest sensitive receptors at the Shannon Ranch and the Stone Ranch Land Company resulting from the WSP solar development and operation, would be well below the 20 in 1 million significance threshold.

As is the case for WSP solar projects, diesel particulate matter (DPM) would be emitted from dieselfueled vehicles and equipment during construction of the gen-tie projects and related facilities. Operational emissions would be negligible due to the very low intensity of inspection and maintenance activities associated with gen-tie lines and related facilities, as discussed above.

There are a total of 10 sensitive receptors (all residences) located within 1,000 feet of the southern gen-tie corridor. There are no residences within 1,000 feet of the northern gen-tie corridor. The nearest 10 residences, located along Nevada and Jayne Avenues, are situated 125 feet to 180 feet from the corridor boundary. It is anticipated that nearest transmission towers would be located approximately 300 feet from the nearest dwelling at the Stone Land Company Ranch and 400 feet from the nearest of the 8 dwellings on the south side of Jayne Avenue. Also few if any new access roads would need to be constructed, given that all tower sites would be readily accessible from the adjacent county roads. It is expected that staging areas would be located well away from any existing residences. The planned locations of the two WSP switching stations are located at least 2 miles and 3 miles from the nearest residences, respectively.

Construction of the gen-tie towers would proceed quickly. The total time required at each tower site for clearing, grading, excavation of footings, and tower assembly and erection, and clean up, would be 1 to 2 weeks. The area subject to temporary grading at each tower site would be approximately

one acre, so the duration of grading equipment operation would be brief. Similarly, the time required for auguring holes for the concrete footings at each tower site would also be short.

The maximally exposed sensitive receptor along Nevada and Jayne Avenues would be 300 feet or more away from the nearest tower site. However, even under worst-case conditions with the nearest tower placed in proximity to the maximally exposed receptor, the total duration of nearby construction could be up to two weeks, but likely much shorter, with total operating time for diesel equipment shorter still. Construction of other towers and temporary access roads in the vicinity would occur at least 800 feet away and farther. At this distance, most diesel particulates would be negligible given the very low frequency of inspection and maintenance activities at would take place at the nearest tower. The very low level of exhaust emissions associated with construction of the gen-tie projects and related facilities is indicated by the low levels of  $PM_{10}/PM_{2.5}$  (as exhaust) shown in Table 5. As shown, the total annual emissions (including off-site truck travel) of exhaust particulate matter is calculated to be 0.43 tons for the entire Southern Gen-Tie, and 0.17 tons for the entire Northern Gen-Tie (for which emissions are lower due to its later construction year when equipment will have lower emissions), both of which are well below the significance threshold of 15 tons per year.

Given the very brief duration of construction that would occur at the nearest residential receptor, and considering the negligible operational emissions, and the lifetime exposure period considered in evaluating cancer risk, it is expected that the increased cancer risk at the maximally exposed receptor would be very low and would be well below the risk threshold of 20 in 1 million. Therefore, the overall health risk due to emissions of diesel particulate matter from construction of the gen-tie projects and related facilities would be less than significant.

In summary, given the relatively minor use of heavy equipment for solar project construction, the very small number of nearby sensitive receptors, the relatively short period of construction emissions that would occur in the vicinity of the sensitive receptors, and the very low intensity of solar operations, the health risks from toxic air contaminants to the nearest sensitive receptors would not be significant. Therefore, no long-term health risks are anticipated, and the potential impacts of WSP solar development and Gen-Tie construction in terms of health risk from toxic air contaminants would be less than significant.

# Mitigation Measure for Impact 5: None required.

**Impact 6:** <u>Odors.</u> The project would result in temporary odors during construction. This impact would be *less-than-significant*.

During construction, the various diesel powered vehicles and equipment in use onsite would create localized odors. These odors would be temporary and would dissipate relatively quickly and thus would not likely to be noticeable for extended periods of time much beyond the boundaries of the WSP solar projects. Most if not all diesel odors carried off-site would disperse into the atmosphere before reaching the nearest sensitive receptors. The potential for diesel odor impacts is therefore less than significant.

During project operations, the WSP solar facilities are not expected to generate any objectionable odors. Therefore, the odor impacts associated with SGF operations would be less than significant.

Mitigation Measure for Impact 6: None proposed.

**Impact 7:** <u>Consistency with Clean Air Planning Efforts.</u> The WSP solar development would not conflict with the current clean air plan or obstruct its implementation. This would be a *less-than-significant impact*.

The SJVACPD's CEQA guidance states that projects with emissions below the thresholds of significance for criteria pollutants would be determined to not conflict with or obstruct implementation of the District's air quality plan (SJVAPCD 2015, p. 65.) As discussed under Impact 2, it is calculated that the emissions of criteria pollutants for the SGF projects would exceed some significance thresholds prior to mitigation, but that implementation of the Mitigation Measures for Impact 2 would result in reduction of emissions levels to below the applicable thresholds of significance. Therefore, the implementation of the WSP Master Plan would not conflict with or obstruct implementation of efforts outlined in the region's air pollution control plans to attain or maintain ambient air quality standards. This would be a less-than-significant impact.

### Mitigation Measure for Impact 7: None required.

**Impact 8:** <u>Greenhouse Gas Emissions.</u> The WSP solar projects would generate greenhouse gas emissions, either directly or indirectly, that may have a significant effect on the environment. However, the GHG emissions resulting from WSP solar development would be very small compared to the substantial net benefit to global climate change resulting from the renewable power generation provided. Therefore, WSP solar development would result in a *less-than-significant impact* to global climate change.

# Introduction

The emission of greenhouse gases (GHG) from many sources over long periods of time has resulted in, and continues to contribute to, global warming and climate change. The effects of climate change include: melting polar ice caps, sea level rise, increased coastal flooding, increased frequency and severity of extreme weather events, habitat disruption, and other adverse environmental effects. It is generally accepted that individual development projects, in and of themselves, are too small to have a perceptible effect on global climate. However, the GHG emissions from each development project results in an incremental contribution to global warming and climate change. The geographic scope of climate change is global, and the cumulative emissions of GHGs globally have resulted in cumulatively significant climate change impacts. Thus, in CEQA terms, GHG emissions associated with individual development projects are by nature cumulative in their effects. As such, a significant impact would occur if the GHG emissions associated with a project represent a considerable contribution to the cumulatively significant impacts resulting from global climate change.

#### **GHG Emissions**

The WSP solar and gen-tie projects would directly generate greenhouse gas emissions during construction, and routine operational and maintenance activities. The three GHGs associated with the project, CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O, would be emitted from on road vehicles and non-road equipment during construction and from vehicles used during routine operational activities. Estimated greenhouse gas emissions from construction and operational activities are shown in Tables 5 and 7 above.

Another GHG that would be used at the solar projects is sulfur hexafluoride (SF<sub>6</sub>) which would be used as a gas insulator in switchgear at on-site substations during project operations. Older switchgear, manufactured before 1999, is prone to leaking SF<sub>6</sub> into the atmosphere. Newer switchgears have a very low leak rate and are subject to CARB regulations which provide for leak prevention methods to reduce emissions to levels consistent with the AB 32 Scoping Plan. As such, the potential for emissions of SF<sub>6</sub> from WSP solar projects is considered negligible.

The WSP solar and gen-tie projects would emit a total of 115,617 metric tons of CO<sub>2</sub>e (Carbon Dioxide equivalents) over their estimated 30-year operational lifetimes. (Note: Since the first SGF would begin operation in 2018 and the last SGF would begin operation in 2030, the collective life of the WSP solar facilities would be about 43 years, although individual solar facilities are assumed to have useful lives of 30 years.) Construction emissions, at 83,442 metric tons of CO<sub>2</sub>e, represent 71 percent of total CO<sub>2</sub>e, while operational emissions at 32,175 metric tons of CO<sub>2</sub>e, represent 29 percent of total CO<sub>2</sub>e. The total CO<sub>2</sub>e emissions annualized over the lives of the projects (30 years each) is equivalent to 3,854 tons per year of CO<sub>2</sub>e for the entire plan area. [Note: The GHG emissions associated with SGF decommissioning would be equivalent to approximately 75 percent of construction emissions<sup>8</sup>. However, since many of the materials salvaged from deconstruction would be recyclable or reusable, these emissions would be largely offset by the avoided emissions associated with the manufacture of future equipment and components from virgin materials.]

Upon completion, the 2,000 MW generated at the Westlands Solar Park would deliver approximately 5 million megawatt-hours per year (MWh/yr) of electricity to the grid. This electric power would be dispatched to the California Independent System Operator (CAISO) in accordance with a complex and dynamic formula that takes into account numerous variables in ongoing dispatching decisions to meet demand for electricity at any given time. One of those variables is compliance with the mandate to integrate electricity generated from renewable sources into the system at a predetermined rate, i.e., 50 percent by 2030 as mandated by the current California Renewables Portfolio Standard (RPS). Since fossil fuel sources are typically less expensive and more reliable than renewable sources at the utility scale, it is expected that in the absence of an RPS mandate, these fossil sources would continue to be the dominant fuel source for electrical generation in California. Thus renewable sources of electricity, such as solar generation, are considered to offset an equivalent amount of generation from other fuel sources, such as natural gas or coal, that would otherwise be dispatched by the CAISO in the absence of an RPS mandate. In other words, the installation and operation of solar facilities, such as those at the Westlands Solar Park, would result in a net reduction of fossil-based generation, and hence a net reduction in CO<sub>2</sub> emissions, relative to overall CO<sub>2</sub> emissions that would occur without the WSP solar projects.

<sup>&</sup>lt;sup>8</sup> Kings County. 2012. Initial Study and Negative Declaration – Conditional Use Permit No. 11-03 (SunPower Henrietta Solar Project). June.

In order to quantify the amount of net reduction in CO<sub>2</sub> emissions that would be represented by the WSP solar and gen-tie facilities, the CO<sub>2</sub> emissions from fossil-fueled plants with the same electrical output was considered for comparison. For example, a large combined cycle natural gas power plant rated at approximately 660 MWs would be expected to produce approximately 1.92 million metric tons/yr of CO2e. Scaled up to a 2,000 MW facility, the CO2e emissions would be approximately 5.82 million metric tons/yr. The GHG emissions of 3,854 MTCO<sub>2</sub>e per year from WSP solar and gen-tie facilities would be far less, and would be 99.93 percent less than emissions from a fossil-fueled plant with comparable generating capacity.

The emissions reductions associated with typical land development projects, such as commercial or residential projects, can be quantified because business-as-usual baseline conditions can be readily established. For renewable solar PV projects, no baseline of business-as-usual conditions has been established, so there is no way to measure emissions reductions against the SJVAPCD 29 percent reduction target for land development projects. However, as an electrical generating facility, it is reasonable to assume that in a business-as-usual scenario that does not include the AB 32 and RPS mandates, natural gas-fueled generation project would be favored over renewable generation given the comparative cost and reliability advantages of natural gas generation. Thus the natural gas power plant described above would reasonably represent BAU, and the WSP emissions reduction of over 99 percent would more than satisfy the 29 percent reduction target of the SJVAPCD.

In summary, the WSP solar and gen-tie facilities would result in a substantial reduction in GHG emissions compared to fossil-fueled power generation that would likely be dispatched in the absence of the RPS requirements. Thus while GHG emissions would occur during construction and operation of WSP solar and gen-tie facilities, the net effect would be beneficial in terms of impacts to global climate change. Therefore, the impact of a relatively small amount of GHG emissions resulting from WSP solar and gen-tie projects would be *less than significant*.

#### Consistency with GHG Reduction Plans and Policies

The Climate Change Scoping Plan adopted by the California Air Resources Board outlines the strategies for achieving the AB 32 emissions reduction targets. One of the key strategies is the Renewables Portfolio Standard (RPS), which requires all electric utilities in California to include a minimum of 50 percent renewable generation sources in their overall energy mix by 2030. The solar photovoltaic generating facilities in the Westlands Solar Park, together with the gen-tie facilities, will help increase the proportion of renewables in the statewide energy portfolio, thereby furthering the implementation of RPS by the target year instead of hindering or delaying its implementation. The addition of the WSP solar generation to the state's electrical supply will help facilitate the retirement of existing older fossil-fueled generation plants, thereby avoiding or offsetting those sources of GHG emissions. Therefore, the project would have *no impact* in terms of conflicting with a plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases.

Mitigation Measure for Impact 8: None needed

# CUMULATIVE AIR QUALITY IMPACTS

# Methodology

The SJVAPCD has developed criteria to determine if a development Project could result in potentially significant regional emissions. According to Section 4.3.2 of the GAMAQI (Thresholds of Significance for Impacts from Project Operations), any proposed project that would individually have a significant air quality impact (i.e., exceed significance thresholds for ROG or NO<sub>x</sub>) would also be considered to have a significant cumulative air quality impact. Impacts of local pollutants (CO and TACs) are cumulatively significant when the combined emissions from the project and other existing and planned projects will exceed air quality standards. For local impacts of PM<sub>10</sub> from unrelated construction projects, the GAMAQI recommends a qualitative approach where construction activities from unrelated projects in the area should be examined to determine if enhanced dust suppression measures are necessary.

# Regional Air Pollutants

As discussed under 'Significance Criteria' above, cumulative ozone impacts would be considered significant only if the project-specific emissions exceed the SJVAPCD significance thresholds for ozone precursors ROG or NO<sub>x</sub>, or the project is not consistent with the regional clean air plan. As discussed in Impact 3 above, project-specific emissions of ozone precursor pollutants (ROG and NO<sub>x</sub>) and PM<sub>10</sub> were found to be less-than-significant, after mitigation. As discussed under Impact 7 above, the project would be consistent with clean air planning efforts and would not conflict with or obstruct their implementation. Therefore, the project contribution to cumulative regional air quality impacts would be less than significant.

# Local Air Pollutant Emissions

Construction period  $PM_{10}$  and  $PM_{2.5}$  emissions would be localized. As shown in Table 6 above, the  $PM_{10}$  construction exhaust from the various WSP projects (e.g., SGFs, gen-ties, switchyards, substation upgrades) would be well below the  $PM_{10}$  significance threshold of 15 tons, while the  $PM_{10}$  dust emissions from the WSP projects would be substantially greater than the  $PM_{10}$ significance threshold of 15 tons. For fugitive dust emissions, the preparation and implementation of SJVAPCD-approved dust control plans, pursuant to Regulation VIII, total  $PM_{10}$  emissions from the WSP projects would be reduced to the extent that the impact would be less than significant.

There are four other approved solar projects (or groups of related projects) in the immediate WSP vicinity, of which two have been completed (Mustang/Orion/Kent South, and Kettleman), and two have not yet commenced construction (American Kings, Mustang 2). Depending on construction schedules, the construction of one or more SGFs in Westlands Solar Park could overlap with the construction of one or more of these other proximate solar projects. By the time the first WSP solar project commences construction, it is assumed that the American Kings and Mustang 2 projects may be under construction at the same time as the first WSP solar project. The implementation of mitigations for PM<sub>10</sub> for exhaust emissions, and implementation of dust control measures required for each project under SJVAPCD Regulation VIII would reduce PM<sub>10</sub> emissions from the American Kings, Mustang 2, and first WSP solar project could exceed 15 tons per year, although the 15 ton threshold for exhaust component of PM<sub>10</sub> would not be exceeded. As noted above, where PM<sub>10</sub> emissions from unrelated projects may occur, the SJVAPCD would employ a qualitative approach to determine if enhanced dust suppression

measures would be necessary. The need for enhanced dust control would be determined by the SJVAPCD on a case-by-case basis in conjunction with its review and approval of the Dust Control Plans for each project. This process would ensure that cumulative PM<sub>10</sub> emissions would be less than significant.

In summary, the cumulative project impacts to localized air quality impacts from criteria pollutants for which the region is in non-attainment would be less-than-significant.

# Cumulative Toxic Air Pollutant Impacts

As discussed above, the American Kings and Mustang 2 solar projects may be under construction at the same time as the first WSP solar project. The first SGF in WSP (i.e., SGF 1) is expected to be constructed in the northeast corner of the WSP plan area, which is directly southwest of the American Kings project and directly west of the Mustang 2 project. As such, all three projects would potentially contribute to emissions of TACs at the same time. In considering the geographic extent of TAC impacts, it is important to note that DPM concentrations diminish rapidly from the source. Pollutant dispersion studies have shown that there is about an 80 percent drop off in DPM concentrations at approximately 1,000 feet from the source (CARB 2014). Thus multiple sources of DPM emissions must all be proximate to a receptor to have an additive effect to DPM concentrations at the receptor site. The nearest residential receptors to the SGF 1 site are located 2.5 miles southwest (Shannon Ranch) and 2.5 miles north (residences at NAS Lemoore). The nearest residential receptors to the Mustang 2 site are located 1.3 miles east (rural residence) and 2.0 miles north (residences at NAS Lemoore). The nearest residential receptors to the American Kings site are located 350 feet north (residences at NAS Lemoore). Although the residences at NAS Lemoore may be temporarily subject to DPM emissions from nearby construction at the American Kings project, it is not expected that this would result in significant increase in lifetime cancer risk to the affected residents. The DPM emissions from the SGF 1 and Mustang 2 projects would be too far from these receptors to make any contribution to the DPM exposure at NAS Lemoore since most if not all DPM emissions from these projects would disperse into the atmosphere before reaching these receptor locations. All the other nearest residential receptors are at least one mile from any of the three projects, where DPM concentrations would be negligible. Therefore, cumulative emissions of DPM or TACs are not anticipated to result in a significant increase in cancer risk to exposed persons.

# Cumulative GHG Emissions Impacts

As discussed under Impact 8, the overall effects of GHG emissions are considered to be cumulatively significant only at the global level, and project-level impacts are considered significant if the project makes a considerable contribution to the cumulative impact. As discussed, the construction and operation of the WSP solar projects would generate some greenhouse gas emissions from fossil-fueled vehicles and equipment; however, these emissions would be more than offset by the avoided greenhouse gas emissions resulting from the WSP projects' renewable electricity generation. Since all of the cumulative projects are also solar PV generating facilities, they would each result in a net benefit to climate change by offsetting an equivalent amount of fossil-fueled power generation. Thus none of the cumulative projects, including the WSP solar projects, would make a considerable contribution to the cumulative climate change impact. Therefore, the cumulative impact to climate change would be less than significant, and the project contribution would be no cumulatively considerable.

# Summary of Cumulative Contribution to Air Quality Impacts

The project would not contribute to local cumulative air quality impacts with respect to any standard or significance criteria. In addition, the project's contribution to cumulative regional air quality impacts would be less than significant. In conclusion, the project would not have a cumulatively significant impact on air quality.

# Appendix 1

**Construction and Operational Emissions Calculations** 

SG1

2018

|                    | Tons/Per | iod  |      |      |       |      |       |        |      |      |
|--------------------|----------|------|------|------|-------|------|-------|--------|------|------|
|                    |          |      |      |      |       | l    | Fug   | Fug    |      |      |
|                    | NOx      | СО   | VOC  | SOx  | PM 10 | CO2  | PM 10 | PM 2.5 |      |      |
| on-off site travel | 4.06     | 3.58 | 0.14 | 0.03 | 0.03  | 2806 | 3.79  | 0.65   |      |      |
| on-site equipment  | 7.91     | 4.28 | 1.12 | 0.01 | 0.34  | 1406 |       |        |      |      |
| Total              | 11.97    | 7.85 | 1.27 | 0.04 | 0.37  | 4212 | 3.79  | 0.65   | 4.16 | 1.02 |

# CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

Main Site Construction-SGF 1

Assumptions: 1. The average engines employed in construction equipment use consumes fuel at a rate of:

Ref: EPA, NR-009b Publication, November 2002.

WSP

Project:

Ref: Sacramento County APCD Const. Program Data, V. 6.0.3, 3/2007.

Ref: EPA, NR-009c Publication, EPA 420-P-04-009, April 2004.

Ref: Niland Energy Project, IID, AFC Vol 2, App A.

Ref: South Coast AQMD PR XXI, Draft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03. The above noted references present fuel consumption values which range from 0.050 to 0.064 gal/hp-hr for diesel engines used in construction related equipment. The value of 0.060 gal/hp-hr was chosen as a reasonable upper mid-range value for construction diesel emissions calculations. For gasoline the mid-range value from SCAQMD of 0.11 gal/hp-hr was used.

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:                                                                              | 8<br>8<br>0.67 | months<br>hrs/day<br>years | Construction Totals: | 240<br>1920<br>240 | hrs/month<br>hrs/const period<br>days/const period            |
|--------------------------------------------------------------------------------------------------------|----------------|----------------------------|----------------------|--------------------|---------------------------------------------------------------|
| <ul><li>5. Anticipated Construction Start Year:</li><li>6. Maximum anticipated equipment use</li></ul> |                | 2016<br>n/a                | 7.                   | CARB, Ma           | soline, lb/gal: 0.000164<br>Indatory GHG Reporting Regulation |
|                                                                                                        |                |                            |                      | Table 4, Ap        | ppendix A, 2007.                                              |

Equipment types and use rates supplied by the Applicant.

| Equipment Category**          | Weighted<br>Average<br>HP | # of Units<br>Used for<br>Project | Avg Use<br>Rate<br>Hrs/day | # of Days<br>On Site<br>(each) | Total<br>Hrs/Day | Total Hrs<br>per Const<br>Period | Total<br>HP-Hrs<br>Period |
|-------------------------------|---------------------------|-----------------------------------|----------------------------|--------------------------------|------------------|----------------------------------|---------------------------|
| Aerial Lifts                  | 63                        | 1                                 | 6                          | 38                             | 6                | 228                              | 14364                     |
| Air Compressors               | 78                        | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Bore-Drill Rigs               | 206                       | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Cement Mixers                 | 9                         | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Concrete/Industrial Saws      | 81                        | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Cranes                        | 226                       | 1                                 | 2                          | 38                             | 2                | 76                               | 17176                     |
| Crawler Tractors/Dozers       | 208                       | 3                                 | 7                          | 85                             | 21               | 1785                             | 371280                    |
| Crushing/Processing Eq.       | 85                        | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Dumpers/Tenders/Water Trucks  | 16                        | 7                                 | 7                          | 78                             | 49               | 3822                             | 61152                     |
| Excavators                    | 163                       | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Forklifts                     | 89                        | 8                                 | 6                          | 80                             | 48               | 3840                             | 341760                    |
| Generator Sets                | 84                        | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Graders                       | 175                       | 5                                 | 7                          | 43                             | 35               | 1505                             | 263375                    |
| Off-Highway Tractors          | 123                       | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Off-Highway Trucks            | 400                       | 12                                | 7                          | 88                             | 84               | 7392                             | 2956800                   |
| Other Diesel Construction Eq. | 172                       | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Other General Industrial Eq.  | 88                        | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Other Material Handling Eq.   | 167                       | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Pavers                        | 126                       | 1                                 | 4                          | 11                             | 4                | 44                               | 5544                      |
| Paving Eq. Other              | 131                       | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Plate Compactors              | 8                         | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Pressure Washers              | 13                        | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Pumps                         | 84                        | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Roller Compactors             | 81                        | 1                                 | 7                          | 17                             | 7                | 119                              | 9639                      |
| Rough Terrain Forklifts       | 100                       | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Rubber Tired Dozers           | 255                       | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Rubber Tires Loaders          | 200                       | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Scrapers                      | 362                       | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Signal Boards                 | 6                         | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Skid Steer Loaders            | 65                        | 1                                 | 7                          | 75                             | 7                | 525                              | 34125                     |
| Surfacing Eq.                 | 254                       | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Sweepers/Scrubbers            | 64                        | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Tractors                      | 98                        | 2                                 | 7                          | 98                             | 14               | 1372                             | 134456                    |
| Front End Loaders (single     | 98                        | 1                                 | 7                          | 33                             | 7                | 231                              | 22638                     |
| Backhoes category)            | 98                        | 1                                 | 4                          | 63                             | 4                | 252                              | 24696                     |
| Trenchers                     | 81                        | 3                                 | 4                          | 86                             | 12               | 1032                             | 83592                     |
| Welders                       | 46                        | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |
| Gasoline Const Eq.            | 175                       | 0                                 | 0                          | 0                              | 0                | 0                                | 0                         |

\*\* diesel equipment unless otherwise specified.

| Const Period Diesel Hp-Hrs =     | 4340597 |      |
|----------------------------------|---------|------|
| Const Period Gasoline Hp-Hrs =   | 0       |      |
| Const Period Diesel Fuel Use =   | 260436  | gals |
| Const Period Gasoline Fuel Use = | 0       | gals |

gal/hp-hr

gal/hp-hr

0.06

0.11

diesel

gasoline

Offroad equipment emissions factors derived SCAQMD Off Road database for 2016.

The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              |                  |        | 2016 Equip | oment Emissi | ons Factors |          |         |
|----------------------------------------------|------------------|--------|------------|--------------|-------------|----------|---------|
| Equip.                                       | lbs/hr           | lbs/hr | lbs/hr     | lbs/hr       | lbs/hr      | lbs/hr   | lbs/hr  |
| Туре                                         | VOC (ROG)        | СО     | NOx        | SOx          | PM10        | CO2      | CH4     |
| Aerial Lifts                                 | 0.0397           | 0.1800 | 0.2482     | 0.0004       | 0.0150      | 34.7217  | 0.0036  |
| Air Compressors                              | 0.0704           | 0.3207 | 0.4729     | 0.0007       | 0.0318      | 63.6073  | 0.0064  |
| Bore-Drill Rigs                              | 0.0623           | 0.5016 | 0.5340     | 0.0017       | 0.0160      | 164.9093 | 0.0056  |
| Cement Mixers                                | 0.0088           | 0.0418 | 0.0542     | 0.0001       | 0.0023      | 7.2481   | 0.0008  |
| Concrete/Industrial Saws                     | 0.0756           | 0.3936 | 0.4589     | 0.0007       | 0.0336      | 58.4637  | 0.0068  |
| Cranes                                       | 0.1137           | 0.4263 | 0.9387     | 0.0014       | 0.0388      | 128.6292 | 0.0103  |
| Crawler Tractors/Dozers                      | 0.1335           | 0.5549 | 0.9315     | 0.0013       | 0.0546      | 114.0188 | 0.0120  |
| Crushing/Processing Eq.                      | 0.1337           | 0.6461 | 0.8965     | 0.0015       | 0.0538      | 132.3090 | 0.0121  |
| Dumpers/Tenders                              | 0.0093           | 0.0314 | 0.0587     | 0.0001       | 0.0024      | 7.6244   | 0.0008  |
| Excavators                                   | 0.0988           | 0.5213 | 0.6603     | 0.0013       | 0.0332      | 119.5800 | 0.0089  |
| Forklifts                                    | 0.0427           | 0.2190 | 0.2816     | 0.0006       | 0.0137      | 54.3958  | 0.0039  |
| Generator Sets                               | 0.0581           | 0.2862 | 0.4370     | 0.0007       | 0.0241      | 60.9927  | 0.0052  |
| Graders                                      | 0.1197           | 0.5883 | 0.8866     | 0.0015       | 0.0441      | 132.7430 | 0.0108  |
| Off-Highway Tractors                         | 0.1803           | 0.7067 | 1.4108     | 0.0017       | 0.0670      | 151.4197 | 0.0163  |
| Off-Highway Trucks                           | 0.1816           | 0.5831 | 1.3322     | 0.0027       | 0.0459      | 260.0516 | 0.0164  |
| Other Diesel Construction Eq.                | 0.0720           | 0.3602 | 0.5680     | 0.0013       | 0.0234      | 122.5629 | 0.0065  |
| Other General Industrial Eq.                 | 0.1267           | 0.4731 | 1.0122     | 0.0016       | 0.0425      | 152.2399 | 0.0114  |
| Other Material Handling Eq.                  | 0.1202           | 0.4608 | 0.9913     | 0.0015       | 0.0411      | 141.1941 | 0.0108  |
| Pavers                                       | 0.1269           | 0.5135 | 0.7128     | 0.0009       | 0.0489      | 77.9335  | 0.0114  |
| Paving Eq. Other                             | 0.0965           | 0.4198 | 0.6393     | 0.0008       | 0.0436      | 68.9412  | 0.0087  |
| Plate Compactors                             | 0.0050           | 0.0263 | 0.0314     | 0.0001       | 0.0012      | 4.3138   | 0.0005  |
| Pressure Washers                             | 0.0121           | 0.0579 | 0.0764     | 0.0001       | 0.0044      | 9.4135   | 0.0011  |
| Pumps                                        | 0.0562           | 0.2785 | 0.3830     | 0.0006       | 0.0239      | 49.6067  | 0.0051  |
| Roller Compactors                            | 0.0792           | 0.3944 | 0.5273     | 0.0008       | 0.0353      | 67.0483  | 0.0071  |
| Rough Terrain Forklifts                      | 0.0775           | 0.4549 | 0.5104     | 0.0008       | 0.0372      | 70.2808  | 0.0070  |
| Rubber Tired Dozers                          | 0.2591           | 0.9834 | 2.0891     | 0.0025       | 0.0858      | 239.0905 | 0.0234  |
| Rubber Tires Loaders                         | 0.0983           | 0.4557 | 0.7114     | 0.0012       | 0.0375      | 108.6114 | 0.0089  |
| Scrapers                                     | 0.2383           | 0.9053 | 1.9017     | 0.0027       | 0.0783      | 262.4900 | 0.0215  |
| Signal Boards                                | 0.0161           | 0.0921 | 0.1172     | 0.0002       | 0.0060      | 16.6983  | 0.0014  |
| Skid Steer Loaders                           | 0.0305           | 0.2184 | 0.2044     | 0.0004       | 0.0106      | 30.2770  | 0.0028  |
| Surfacing Eq.                                | 0.1045           | 0.4506 | 0.9731     | 0.0017       | 0.0353      | 165.9721 | 0.0094  |
| Sweepers/Scrubbers                           | 0.0810           | 0.4988 | 0.5192     | 0.0009       | 0.0332      | 78.5433  | 0.0073  |
| Tractors                                     | 0.0610           | 0.3689 | 0.4070     | 0.0008       | 0.0258      | 66.7979  | 0.0055  |
| Front End Loaders                            | 0.0610           | 0.3689 | 0.4070     | 0.0008       | 0.0258      | 66.7979  | 0.0055  |
| Backhoes                                     | 0.0610           | 0.3689 | 0.4070     | 0.0008       | 0.0258      | 66.7979  | 0.0055  |
| Trenchers                                    | 0.1200           | 0.4479 | 0.5719     | 0.0007       | 0.0453      | 58.7146  | 0.0108  |
| Welders                                      | 0.0482           | 0.1951 | 0.2173     | 0.0003       | 0.0168      | 25.6027  | 0.0044  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771           | 0.3855 | 1.08       | 0.00014      | 0.1542      | 14.1565  | 0.00037 |
| (assoling EEs: EDA OMS AMD Papart NP 000A    | 2.13.08 and $SC$ |        |            |              |             |          |         |

(gasoline EFs: EPA OMS-AMD Report NR-009A, 2-13-98, and SCAQMD EMFAC 2007 CEQA Tables, 2016.)

#### Construction Period Emissions, lbs

| Туре                          |      |         |       |       |        |         |          |      |
|-------------------------------|------|---------|-------|-------|--------|---------|----------|------|
|                               | VOC  | СО      | NOx   | SOx   | PM10   | CO2     | CH4      |      |
| Aerial Lifts                  | 9    | 41      | 57    | 0     | 3      | 7917    | 1        |      |
| Air Compressors               | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Bore-Drill Rigs               | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Cement Mixers                 | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Concrete/Industrial Saws      | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Cranes                        | 9    | 32      | 71    | 0     | 3      | 9776    | 1        |      |
| Crawler Tractors/Dozers       | 238  | 991     | 1663  | 2     | 97     | 203524  | 21       |      |
| Crushing/Processing Eq.       | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Dumpers/Tenders               | 35   | 120     | 225   | 0     | 9      | 29140   | 3        |      |
| Excavators                    | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Forklifts                     | 164  | 841     | 1081  | 2     | 52     | 208880  | 15       |      |
| Generator Sets                | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Graders                       | 180  | 885     | 1334  | 2     | 66     | 199778  | 16       |      |
| Off-Highway Tractors          | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Off-Highway Trucks            | 1343 | 4310    | 9848  | 20    | 339    | 1922301 | 121      |      |
| Other Diesel Construction Eq. | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Other General Industrial Eq.  | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Other Material Handling Eq.   | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Pavers                        | 6    | 23      | 31    | 0     | 2      | 3429    | 1        |      |
| Paving Eq. Other              | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Plate Compactors              | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Pressure Washers              | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Pumps                         | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Roller Compactors             | 9    | 47      | 63    | 0     | 4      | 7979    | 1        |      |
| Rough Terrain Forklifts       | 0    | 47<br>0 | 0     | 0     | 4<br>0 | 0       | 0        |      |
| Rubber Tired Dozers           | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Rubber Tires Loaders          | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Scrapers                      | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Signal Boards                 | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Skid Steer Loaders            |      | 115     | 107   |       |        | 15895   | 0        |      |
|                               | 16   |         |       | 0     | 6      |         | 1        |      |
| Surfacing Eq.                 | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Sweepers/Scrubbers            | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Tractors                      | 84   | 506     | 558   | 1     | 35     | 91647   | 8        |      |
| Front End Loaders             | 14   | 85      | 94    | 0     | 6      | 15430   | 1        |      |
| Backhoes                      | 15   | 93      | 103   | 0     | 7      | 16833   | 1        |      |
| Trenchers                     | 124  | 462     | 590   | 1     | 47     | 60594   | 11       |      |
| Welders                       | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Gasoline Const Eq.            | 0    | 0       | 0     | 0     | 0      | 0       | 0        |      |
| Totals                        | VOC  | СО      | NOx   | SOx   | PM10   | PM2.5   | CO2      | CH   |
| lbs per const. period         | 2246 | 8551    | 15825 | 30    | 677    | 671.23  | 2793122  | 203  |
| tons per const. period        | 1.1  | 4.3     | 7.9   | 0.015 | 0.34   | 0.34    | 1396.56  | 0.10 |
| Average lbs/day =             | 9.4  | 35.6    | 65.9  | 0.123 | 2.82   | 2.80    | 11638.01 | 0.84 |
| Normalized TPY =              | 1.12 | 4.28    | 7.91  | 0.01  | 0.34   | 0.34    | 1396.56  | 0.10 |

| CO2e, tons/period | 1406.2 |
|-------------------|--------|
| CO2e, tons/yr:    | 1406.2 |

N2O 48 0.02 0.20 0.018

CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

Other Assumptions and References:

 $1. \ Trench \ construction \ times \ per: \ Southern \ Regional \ Water \ Pipeline \ Alliance, \ 3/08.$ 

Optimum trench construction progress rate is 80m (260ft) per day.

Non-optimum trench construction progress rate is 30m (100 ft) per day.

An average progress of 180 ft/day is used where applicable.

2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness. A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable. The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr. Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001.

3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.

4. Construction schedule note: applicant data indicates a construction work day period of 8 hours

The equipment use rates provided by the applicant are consistent with an 8 hour workday.

5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.

| CONSTRUCTI         | ON PHASE     | - SGF 1             |                                                          |                 |                   |                                                   |                                                               |        |
|--------------------|--------------|---------------------|----------------------------------------------------------|-----------------|-------------------|---------------------------------------------------|---------------------------------------------------------------|--------|
| MRILevel 2 An      | alysis(Refs  | 1, 3-7)             |                                                          |                 | Acres             | 931                                               |                                                               |        |
| A cres Subject to  | Construction | n Disturbance Acti  | vites:                                                   |                 |                   | 93.1                                              | note (10)                                                     |        |
|                    |              | iction Disturbance  |                                                          | /dayofthisph    | nase:             | 9.3                                               |                                                               |        |
| Emissions Factor   | for PM10 U   | Incontrolled, tons/ | acre/month:                                              |                 |                   | 0.12                                              |                                                               |        |
| PM2.5 fraction o   | f PM10 (per  | CARB CEIDARS        | SProfiles):                                              |                 |                   | 0.21                                              |                                                               |        |
| Activity Levels:   |              | Hrs/Day:            |                                                          |                 |                   | 8                                                 |                                                               |        |
|                    |              | Days/Wk:            |                                                          |                 |                   | 5                                                 |                                                               |        |
|                    |              | Days/Month:         | Applicant Data                                           |                 |                   | 22                                                |                                                               |        |
|                    | Phase Cons   | t Period, Months:   |                                                          |                 |                   | 8                                                 | 0.67                                                          | years  |
|                    | Phase Co     | nst Period, Days:   |                                                          |                 |                   | 240                                               |                                                               |        |
| Wet Season Adj     |              | •                   | -                                                        | ure 13.2.2-1, 1 | 2/03 or CalEEM of | od, Appendix D                                    | , Table1.1.)                                                  |        |
| Ν                  | /lean#days/  | year with rain >=   | 0.01 inch:                                               |                 |                   | 40                                                |                                                               |        |
| Ν                  | /lean # mont | hs/yrwithrain>=     | 0.01 inch:                                               |                 |                   | 1.33                                              |                                                               |        |
|                    |              | nst Period, Months  | :                                                        |                 |                   | 7.11                                              |                                                               |        |
| A                  | djusted Cor  | nst Period, Days:   |                                                          |                 |                   | 213                                               |                                                               |        |
|                    |              |                     |                                                          |                 |                   |                                                   |                                                               |        |
| Controlsfor Fu     | gitive Dust: |                     | Pr                                                       | oposed wateri   | ng cycle:         | 3                                                 | times per day                                                 |        |
| Speed control of   | onsite const |                     | yields a 40-70%<br>control based on<br>ontrol % used for | mitigationspr   | oposed:           | conservative for<br>84<br><mark>84</mark><br>0.16 | site). (11)(12)<br>% control<br>% control<br>release fraction |        |
| Emissions: Cont    | rolled       | PM10                | PM2.5                                                    |                 |                   |                                                   |                                                               |        |
| te                 | ons/month    | 0.179               | 0.038                                                    |                 |                   |                                                   |                                                               |        |
| te                 | ons/period   | 1.271               | 0.267                                                    |                 |                   |                                                   |                                                               |        |
| Max II             | bs/day       | 16.250              | 3.413                                                    |                 |                   |                                                   |                                                               |        |
| Soil Handling E    | missions (C  | ut and Fill). (2)   |                                                          |                 |                   |                                                   |                                                               |        |
| Total cu.yds of so | •            | at and 1 mj. (2)    | 0                                                        |                 | Mean annual w     | ind speed mph                                     | · (8)                                                         | 8.03   |
| Total tons of soil |              |                     | 0.0                                                      |                 | Avg. Soil moist   |                                                   | (0)                                                           | 5      |
| Total days soil ha |              |                     | 213                                                      |                 | Avg. Soil densi   | • •                                               |                                                               | 1.3    |
| Tons soil/day:     |              |                     | 0                                                        |                 | k factor for PM   |                                                   |                                                               | 0.35   |
| Control Eff, wate  | rina. %      |                     | 80                                                       |                 | Number of Dro     |                                                   |                                                               | 4      |
|                    | -            | ease Fraction:      | 0.2                                                      |                 | Calc 1            | wind                                              |                                                               | 1.851  |
|                    |              |                     | •                                                        |                 | Calc 2            | moisture                                          |                                                               | 3.607  |
| Emissions:         | PM10         | PM2.5               |                                                          |                 | Calc 3            | int                                               |                                                               | 0.513  |
| tons/period        | 0.000        | 0.000               |                                                          |                 | Calc 4            | PM10                                              | lb/ton                                                        | 0.0006 |
| tons/month         | 0.000        | 0.000               |                                                          |                 | PM2.5 fraction    |                                                   |                                                               | 0.210  |
| max Ibs/day        | 0.000        | 0.000               |                                                          |                 |                   |                                                   |                                                               |        |
|                    |              | EmissionsTot        |                                                          | PM 10           | PM 2.5            |                                                   |                                                               |        |
|                    |              |                     | tons/period                                              | 1.271           | 0.267             |                                                   |                                                               |        |
|                    |              |                     |                                                          | 1.271           | 0.207             |                                                   |                                                               |        |

# Methodology References:

(1) MRI Report, South Coast AQMD Project No. 95040, March 1996, Level 2 Analysis Procedure. MRI Report uncontrolled factor of 0.11 tons/acre/month is based on 168 hours per month of const activity.

For an activity rate of ~180 hrs/month, the adjusted EF would be 0.12 tons/acre/month (uncontrolled).

(u) Soil Handling (Cut and Fill) EDA A D 42 Section 12 2.4 11/06

- (2) Soil Handling (Cut and Fill), EPA, AP-42, Section 13.2.4., 11/06.
  (3) URBEMIS, Version 9.2.4, User's Manual Appendix A, page A-6.
- (3) ORBEINTS, Version 9.2.4, User's Manual Appendix A, page A

(4) CARB Area Source Methodology, Section 7.7, 9/02.

(5) WRAP Fugitive Dust Handbook, 9/06.

(6) USEPA, AP-42, Section 13.2.3, 2/10.

(7) Estimating PM Emissions from Construction Operations, USEPA, MRI, 9/99.

(8) Wind speed data for Lemoore met station. Annual avg wind speed = 8.03 mph, % calms = 3.44%.

(9) Soil Moisture; 5% assumed avg value

(10) adjusted applicant value based on 7.5% of total acreage disturbed on any given day

(11) SCAQMD CEQA Handbook 1993.

(12) SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres, Fugitive Dust Mitigations, February 2005.

# OFFSITE PAVED ROAD FUGITIVE DUST EMISSIONS

(associated with delivery truck and worker vehicle traffic on I-5 and plant access road)

| Average mi   | leage for const                        | ruction rela              | ated vehicles:            |           | NA      | miles, roundtrip distance***                                                    |
|--------------|----------------------------------------|---------------------------|---------------------------|-----------|---------|---------------------------------------------------------------------------------|
| Avg weight   | t of vehicular eo                      | quipment o                | n road:                   |           | 4.1     | tons (range 2 - 42 tons)                                                        |
| Road surface | ce silt loading fa                     | actor:                    |                           |           | 0.015   | g/m2 (range 0.03 - 400 g/m2)<br>Limited Access Freeway >10,000 ADT <b>(I-5)</b> |
| Particlesiz  | e multiplier fac                       | tors.                     | F                         | PM10      | 0.0022  | Ib/VMT                                                                          |
|              |                                        | .010.                     |                           | PM2.5     | 0.00054 | Ib/VMT                                                                          |
|              |                                        |                           | •                         | 1012.0    | 0.00004 |                                                                                 |
| C factors (b | orake and tire w                       | ear):                     | F                         | PM10      | 0.00047 | Ib/VMT                                                                          |
| 0.0000.0(1   |                                        | 001)                      |                           | PM2.5     | 0.00036 | Ib/VMT                                                                          |
|              |                                        |                           |                           |           |         |                                                                                 |
| Avg vehicle  | e speed on road                        | :                         |                           |           | 65      | mph                                                                             |
| Ū            | •                                      |                           |                           |           |         |                                                                                 |
| Avg. Numb    | per of vehicles p                      | er day:                   |                           |           | 195     |                                                                                 |
|              |                                        |                           |                           |           |         | calculated per Applicant da                                                     |
| Avg. Numb    | per of work days                       | s per month               | 1:                        |           | 22      | VMT/period: 5431085                                                             |
|              |                                        | Т                         | otal vehicles pe          | er month: | 4290    |                                                                                 |
| Number of    | work months:                           |                           |                           |           | 7.11    | adjusted for precip events                                                      |
|              |                                        | Total ve                  | hicles per const          | period:   | 30501.9 |                                                                                 |
|              |                                        |                           |                           |           |         |                                                                                 |
|              |                                        | PM10                      |                           |           |         |                                                                                 |
|              | Calc 1                                 | 0.022                     |                           |           |         |                                                                                 |
|              | Calc 2                                 | 4.217                     |                           |           |         |                                                                                 |
|              | Calc 3                                 | 0.0007                    | lb/VMT                    |           |         |                                                                                 |
|              | Emissions<br>Ibs/period<br>tons/period | PM 10<br>3655.65<br>1.828 | PM 2.5<br>617.81<br>0.309 |           |         |                                                                                 |
|              | rousperiod                             | 1.020                     | 0.309                     |           |         |                                                                                 |

EPA, AP-42, Section 13.2.1, March 2006, updated 9/2008.

PM2.5 fraction of PM10 per CARB CEIDARs is 0.169

\*\*\* Note: avg roundtrip distance traveled by delivery or worker vehicles on freeways (I-5) and other State Routes in the project area.

Vehicles per day: worker + deliveries+staff support vehicles (averages)

Vehicle Weight: 9% are trucks. Assume 0.09\*24 tons + 0.91 \* 2 tons = 4.1 tons

# ONSITE UNPAVED ROAD FUGITIVE DUST

| Length of Unpaved Roads                                   | on Construct                                      | ion site:                                          | 0.1                | miles*                                 |                           |                           |                         |
|-----------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|--------------------|----------------------------------------|---------------------------|---------------------------|-------------------------|
| Avg weight of construction                                | n vehicular eo                                    | quipment on road:                                  | 4.1                | tons (range 2                          | - 42 tons)                |                           |                         |
| Road surface silt content:<br>Road surface material mois  | sture content                                     | :                                                  | 8.5<br>5           | % (range 1.8<br>% (range 0.03          | ,                         |                           |                         |
| Particle size multiplier fac                              | tors:                                             | PM10<br>PM2.5                                      | k<br>1.5<br>0.15   | a<br>0.9<br>0.9                        | b<br>0.45<br>0.45         |                           |                         |
| C factors (brake and tire w                               | ear):                                             | PM10<br>PM2.5                                      | 0.00047<br>0.00036 | Ib/VMT<br>Ib/VMT                       |                           |                           |                         |
| Avg construction vehicles                                 | peed on road                                      | :                                                  | 5                  | mph (range 5                           | -55 mph)                  |                           |                         |
| Avg number of construction                                | n vehicles pe                                     | er day:                                            | 74                 | * *                                    |                           |                           | unligent det            |
| Number of construction wa                                 |                                                   |                                                    | 22                 |                                        |                           | l/period:                 | Applicant dat<br>5396.1 |
| Number of construction wa                                 | ork months:                                       | vehicles per month:                                | 1628<br>7.11       | adjusted for p                         | precipitation             | events                    |                         |
| Control reduction due to w                                | atering, spee                                     |                                                    | 53961<br>80<br>0.8 |                                        |                           |                           |                         |
|                                                           |                                                   | Release Fraction =                                 | 0.2                |                                        |                           |                           |                         |
| Calc 1<br>Calc 2<br>Calc 3<br>Calc 4<br>Controlled lb/VMT | PM10<br>0.733<br>1.151<br>1.266<br>1.266<br>0.253 | PM2.5<br>0.733<br>1.151<br>0.127<br>0.127<br>0.025 |                    | Emissions<br>Ibs/period<br>tons/period | PM 10<br>1366.55<br>0.683 | PM 2.5<br>136.99<br>0.068 |                         |

EPA, AP-42, Section 13.2.2, March 2006

Soil Moisture; 5% avg

Soil silt content: 8.5% per AP-42 for construction site scraper routes

\*\* const equipment plus site support pickups plus

# CONSTRUCTION PHASE - Truck Hauling/Delivery and Site Support Vehicle Emissions

| All Phases                     |                | )             |            |            |                 |            |            |            |             |              |        |
|--------------------------------|----------------|---------------|------------|------------|-----------------|------------|------------|------------|-------------|--------------|--------|
| Delivery/Hauling Vehicle Use R | Rates          |               |            | Emissi     | ons Factors (Ib | os/vmt)    |            |            |             |              |        |
| Delivery Roundtrip Distance:   | 0              | miles         | NOx        | CO         | VOC             | SOx        | PM10       | CO2        |             |              |        |
| Const Days per Period:         | 0              |               | 0.00774877 | 0.00056881 | 0.00013224      | 0.000026   | 5.2881E-05 | 3.17439316 | HDDT        |              |        |
| Avg Deliveries per Day:        | 0              |               | 0.000569   | 0.00393159 | 9.5515E-05      | 0.000013   | 3.8032E-06 | 1.0634582  | MDGT        |              |        |
| Fraction of Deliveries-Diesel: | 0.95           | HDDT          |            |            | Daily Emiss     | ions (lbs) |            |            |             |              |        |
| Fraction of Deliveries-Gas:    | 0.05           | MDGT          | NOx        | СО         | VOC             | SOx        | PM 10      | CO2        | PM 2.5      |              |        |
| Total Delivery VMT:            | 994085         | per Applicant | 0.000      | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | HDDT         |        |
| Total Daily VMT-Diesel         | 0              |               | 0.000      | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | MDGT         |        |
| Total Daily VMT-Gasoline       | 0              |               |            | ٦          | Fonsper Con     | st Period  |            |            |             |              |        |
| Total Period VMT-Diesel        | 944380.75      |               | 3.659      | 0.269      | 0.062           | 0.012      | 0.025      | 1498.9     | 0.021       | HDDT         |        |
| Total Period VMT-Gasoline      | 49704.25       |               | 0.014      | 0.098      | 0.002           | 0.000      | 0.000      | 26.4       | 0.000       | MDGT         |        |
| Construction Site Support Veh  | icle Use Rates | (LDTs)        |            |            | Daily Emissi    | ons, Ibs   |            |            |             |              |        |
| Gasoline Vehicle VMT Period:   | 75900          | <b>、</b>      | NOx        | СО         | voc             | SOx        | PM 10      | CO2        |             |              | PM 2.5 |
| Avg Daily Gasoline VMT:        | 300            |               | 0.00053213 | 0.00473183 | 0.00010839      | 0.000008   | 5.9144E-06 | 0.68648682 | lbs/vmt*    | LDT gasoline |        |
| Avg Daily Diesel VMT:          | 0              |               | 0.1596     | 1.4195     | 0.0325          | 0.0024     | 0.0018     | 205.9460   | lbs/day     | gasoline     | 0.0012 |
| Total Phase Const Days:        | 240            |               |            |            |                 |            |            |            | -           | -            |        |
|                                |                |               |            |            | Tonsper Co      | nst Period |            |            |             |              |        |
| Ref: EMFAC 2014, SJVAPCD Y     | ′ear 2016      |               | 0.0202     | 0.1796     | 0.0041          | 0.0003     | 0.0002     | 26.1       | tons/period | gasoline     | 0.0001 |
| LDT1-gas, MDV-gas, HDDT-ds     |                |               |            |            |                 |            |            |            |             |              |        |
| See EF data in WSP Support App | pendix         |               |            |            |                 |            |            |            |             |              |        |
|                                |                |               |            |            |                 |            |            |            |             |              |        |

#### Notes \*\*\*

VMT for delivery/hauling for all vehicles includes: (1) materials deliveries to site, (2) materials removal from site, other VMT as specified below.

Support Vehicle VMT: best estimate at time of filing, 10 LDT (gasoline) at 30 VMT/day

CARB-CEIDARS, Updated Fractions for PM Profiles: PM2.5 = 0.991 of PM10 for Diesel Exhaust, and 0.998 for Gasoline Vehicles.

# CONSTRUCTION PHASE - Worker Travel - Emissions

| Worker Travel to Site                |                |           |              |             | See EF data in       | WSP Support     | Appendix      |           |      |
|--------------------------------------|----------------|-----------|--------------|-------------|----------------------|-----------------|---------------|-----------|------|
| Avg Occupancy/Vehicle:               | 0              |           |              |             |                      |                 |               |           |      |
| Avg Roundtrip Distance, miles:       | 0.0            |           |              | Emissio     | ns Factors (Ibs/     | √MT)            |               |           |      |
| Avg # of Worker Vehicles, per day:   | 0              |           | NOx          | CO          | VOC                  | SOx             | PM10          | CO2       |      |
| Avg Daily Worker VMT:                | 0              |           | 0.00016457   | 0.001365523 | 3.3944E-05           | 0.000007        | 3.65512E-06   | 0.6946741 |      |
| Max # of Worker Vehicles, per day:   | 0              |           |              |             |                      |                 |               |           |      |
| Max Daily Worker VMT:                | 0              |           |              | Da          | aily Emissions       | (lbs)           |               |           |      |
| Total Const Days:                    | 240            |           | NOx          | CO          | VOC                  | SOx             | PM10          | CO2       | PM2  |
| Total Const Period Worker VMT:       | 4437000        | Avg       | 0.00         | 0.00        | 0.00                 | 0.00            | 0.00          | 0.00      | 0.00 |
| VMT data supplie                     | ed by Applican | t.        |              |             |                      |                 |               |           |      |
|                                      |                |           |              | То          | nsperConstP          | eriod           |               |           |      |
|                                      |                | Avg       | 0.365        | 3.029       | 0.075                | 0.016           | 0.008         | 1541.1    | 0.00 |
|                                      |                |           |              |             |                      |                 |               |           |      |
| Worker Travel by Busing from Staging | Area           |           |              |             |                      |                 |               |           |      |
| Total Bus VMT/Const Period:          | 0              | Bus Round | d Trips/Day: | 0           | max                  | Ref:SJVAPCI     | D EMFAC 2014, | Year 2016 |      |
| Avg Bus VMT/Const Day:               | 0              | Bus Occup | bancy/Trip:  | 0           |                      | All other buses | s-DSL         |           |      |
| Max Bus VMT/Const Day:               | 0              |           |              |             | :                    | See EF data in  | WSP Support A | opendix   |      |
|                                      |                |           |              |             |                      |                 |               |           |      |
|                                      |                |           |              |             | ns Factors (Ibs/     |                 |               |           |      |
| # buses supplied by Applicant.       |                |           | NOx          | CO          | VOC                  | SOx             | PM10          | CO2       |      |
|                                      |                |           | 0.012001     | 0.001203    | 0.000458             | 0.000026        | 0.00015       | 2.734838  |      |
|                                      |                |           |              |             |                      |                 |               |           |      |
|                                      |                |           |              |             | aily Emissions       | . ,             |               |           |      |
|                                      |                |           | NOx          | CO          | VOC                  | SOx             | PM 10         | CO2       | PM 2 |
|                                      |                | Avg       | 0.00         | 0.00        | 0.00                 | 0.00            | 0.00          | 0.00      | 0.00 |
|                                      |                | Max       | 0.00         | 0.00        | 0.00                 | 0.00            | 0.00          | 0.00      | 0.00 |
|                                      |                | Widz      | 0.00         | 0.00        | 0.00                 | 0.00            | 0.00          | 0.00      | 0.00 |
|                                      |                | Wax       | 0.00         |             |                      |                 | 0.00          | 0.00      | 0.00 |
|                                      |                | Avg       | 0.000        |             | Tonsper Con<br>0.000 |                 | 0.000         | 0.000     | 0.00 |

Ref: SJVAPCD EMFAC 2014, Year 2016

LDA-gas

#### **CONSTRUCTION PHASE - Trackout Emissions**

| Paved Road Length (miles):       | 0.1          | estimated rou   | undtrip trackout distance |                 |             |
|----------------------------------|--------------|-----------------|---------------------------|-----------------|-------------|
| Daily # of Vehicles:             | 74           |                 |                           |                 |             |
| Avg Vehicle Weight (tons):       | 6.8          |                 | PM 10                     | PM 2.5*         |             |
| Total Unadjusted VMT/day         | 7.4          |                 | 0.361                     |                 |             |
| Particle Size Multipliers        | PM10         |                 | 1.924                     |                 |             |
| Ib/VMT                           | 0.023        |                 | 0.002                     | 0.0004          | lb/VMT      |
| C factor, Ib/VMT                 | 0.00047      |                 | 0.129                     | 0.0217          | lbs/day     |
| Road Sfc Silt Loading (g/m^2):   | 0.56         | local X 2       | 0.001                     | 0.0002          | tons/month  |
| # of Active Trackout Points:     | 1            | **              | 0.01                      | 0.0017          | tons/period |
| Added Trackout Miles:            | PM10         |                 |                           |                 |             |
| Trackout VMT/day:                | 44           |                 | Default Silt Load Valu    | les for Paved I | Road Types  |
| Final Adjusted VMT/day           | 52           |                 | Freeway                   | 0.02 g/m2       |             |
| Final Adjusted VMT/month         | 1140         |                 | Arterial                  | 0.036 g/m2      |             |
| Final Adjusted VMT/period        | 8103         |                 | Collector                 | 0.036 g/m2      |             |
| Construction days/month:         | 22           |                 | Local                     | 0.28 g/m2       |             |
| Adj. Construction months/period: | 7.11         |                 | Rural                     | 1.6 g/m2        |             |
| Control Applied to Trackout:     | Gravel entra | nce, metal clea | ning grates, water washi  | ng, sweeping    |             |
| Control Efficiency, %            | 84           | 0.84            | Release Factor =          | 0.16            |             |

\* PM2.5 fraction of PM10 assumed to be 0.169 (CARB CEIDARS updated fraction values) for paved roads.

\*\* 1 controlled ingress/egress point is planned for site construction

EPA, AP-42, Section 13.2.1, Proposed revisions dated 9/2008.

Use silt loading factor from default values for road type if no site specific data is available.

Trackout effects approximately 0.05 mi. of roadway arriving and departing from the site access point.

Plant access road is already paved. Entrance will be gravelled with metal grates for take out control.

Vehicle count = delivery trucks plus site support trucks (see Unpaved Onsite tab)

Worker vehicles not counted for trackout, they will park on the site perimeter.

|                    |       |       |      |      |       | ļ       | Fug   |
|--------------------|-------|-------|------|------|-------|---------|-------|
|                    | NOx   | СО    | VOC  | SOx  | PM 10 | CO2     | PM 10 |
| on-off site travel | 5.21  | 4.55  | 0.18 | 0.05 | 0.04  | 4281    | 9.14  |
| on-site equipment  | 21.71 | 12.21 | 3.21 | 0.04 | 1.00  | 3715    |       |
| Total              | 26.92 | 16.76 | 3.39 | 0.08 | 1.04  | 7996    | 9.14  |
| Months:            | 23    |       |      |      |       |         |       |
| Max Year Months:   | 12    |       |      |      |       |         |       |
| Total per Year:    | 14.05 | 8.74  | 1.77 | 0.04 | 0.54  | 4171.79 | 4.77  |

# Tons/Period

| Fug    |  |
|--------|--|
| PM 2.5 |  |
| 1.68   |  |
| 1.68   |  |

0.88

# CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

# Project: WSP Main Site Construction-SGF 2

# Assumptions:

1. The average engines employed in construction equipment use consumes fuel at a rate of:

Ref: EPA, NR-009b Publication, November 2002.

Ref: Sacramento County APCD Const. Program Data, V. 6.0.3, 3/2007.

Ref: EPA, NR-009c Publication, EPA 420-P-04-009, April 2004.

Ref: Niland Energy Project, IID, AFC Vol 2, App A.

Ref: South Coast AQMD PR XXI, Draft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03. The above noted references present fuel consumption values which range from 0.050 to 0.064 gal/hp-hr for diesel engines used in construction related equipment. The value of 0.060 gal/hp-hr was chosen as a reasonable upper mid-range value for construction diesel emissions calculations. For gasoline the mid-range value from SCAQMD of 0.11 gal/hp-hr was used.

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:                      | 24<br>8<br>2 | months<br>hrs/day<br>years | Construction Totals: | 220<br>5280<br>660                                                     | hrs/month<br>hrs/const period<br>days/const period |  |
|------------------------------------------------|--------------|----------------------------|----------------------|------------------------------------------------------------------------|----------------------------------------------------|--|
|                                                | 2            | 5                          |                      |                                                                        |                                                    |  |
| 5. Anticipated Construction Start Year:        |              | 2016                       | 7.                   | N2O EF die<br>N2O EF ga                                                | esel, lb/gal: 0.000183<br>soline, lb/gal: 0.000164 |  |
| 6. Maximum anticipated equipment use month is: |              | n/a                        |                      | CARB, Mandatory GHG Reporting Regulation<br>Table 4, Appendix A, 2007. |                                                    |  |

Equipment types and use rates supplied by the Applicant.

|                               | Weighted<br>Average | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site | Total   | Total Hrs<br>per Const | Total<br>HP-Hrs |
|-------------------------------|---------------------|------------------------|-----------------|----------------------|---------|------------------------|-----------------|
| Equipment Category**          | HP                  | Project                | Hrs/day         | (each)               | Hrs/Day | Period                 | Period          |
| Aerial Lifts                  | 63                  | 1                      | 6               | 94                   | 6       | 564                    | 35532           |
| Air Compressors               | 78<br>206           | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Bore-Drill Rigs               | 206                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cement Mixers                 | 9                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Concrete/Industrial Saws      | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cranes                        | 226                 | 1                      | 2               | 94                   | 2       | 188                    | 42488           |
| Crawler Tractors/Dozers       | 208                 | 3                      | 7               | 210                  | 21      | 4410                   | 917280          |
| Crushing/Processing Eq.       | 85                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Dumpers/Tenders/Water Trucks  | 16                  | 7                      | 7               | 192                  | 49      | 9408                   | 150528          |
| Excavators                    | 163                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Forklifts                     | 89                  | 8                      | 6               | 200                  | 48      | 9600                   | 854400          |
| Generator Sets                | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Graders                       | 175                 | 5                      | 7               | 108                  | 35      | 3780                   | 661500          |
| Off-Highway Tractors          | 123                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Off-Highway Trucks            | 400                 | 12                     | 7               | 220                  | 84      | 18480                  | 7392000         |
| Other Diesel Construction Eq. | 172                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other General Industrial Eq.  | 88                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other Material Handling Eq.   | 167                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pavers                        | 126                 | 1                      | 4               | 28                   | 4       | 112                    | 14112           |
| Paving Eq. Other              | 131                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Plate Compactors              | 8                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pressure Washers              | 13                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pumps                         | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Roller Compactors             | 81                  | 1                      | 7               | 42                   | 7       | 294                    | 23814           |
| Rough Terrain Forklifts       | 100                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tired Dozers           | 255                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tires Loaders          | 200                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Scrapers                      | 362                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Signal Boards                 | 6                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Skid Steer Loaders            | 65                  | 1                      | 7               | 188                  | 7       | 1316                   | 85540           |
| Surfacing Eq.                 | 254                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Sweepers/Scrubbers            | 64                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Tractors                      | 98                  | 2                      | 7               | 245                  | 14      | 3430                   | 336140          |
| Front End Loaders (single     | 98                  | 1                      | 7               | 83                   | 7       | 581                    | 56938           |
| Backhoes category)            | 98                  | 1                      | 4               | 158                  | 4       | 632                    | 61936           |
| Trenchers                     | 81                  | 10                     | 4               | 235                  | 40      | 9400                   | 761400          |
| Welders                       | 46                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Gasoline Const Eq.            | 175                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |

| Const Period Diesel Hp-Hrs =     | 11393608 |      |
|----------------------------------|----------|------|
| Const Period Gasoline Hp-Hrs =   | 0        |      |
| Const Period Diesel Fuel Use =   | 683616   | gals |
| Const Period Gasoline Fuel Use = | 0        | gals |

gal/hp-hr

gal/hp-hr

0.06

0.11

diesel

gasoline

Offroad equipment emissions factors derived SCAQMD Off Road database for 2016.

The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              | 2016 Equipment Emissions Factors |        |        |         |        |          |         |  |  |  |  |
|----------------------------------------------|----------------------------------|--------|--------|---------|--------|----------|---------|--|--|--|--|
| Equip.                                       | lbs/hr                           | lbs/hr | lbs/hr | lbs/hr  | lbs/hr | lbs/hr   | lbs/hr  |  |  |  |  |
| Туре                                         | VOC (ROG)                        | CO     | NOx    | SOx     | PM10   | CO2      | CH4     |  |  |  |  |
| Aerial Lifts                                 | 0.0397                           | 0.1800 | 0.2482 | 0.0004  | 0.0150 | 34.7217  | 0.0036  |  |  |  |  |
| Air Compressors                              | 0.0704                           | 0.3207 | 0.4729 | 0.0007  | 0.0318 | 63.6073  | 0.0064  |  |  |  |  |
| Bore-Drill Rigs                              | 0.0623                           | 0.5016 | 0.5340 | 0.0017  | 0.0160 | 164.9093 | 0.0056  |  |  |  |  |
| Cement Mixers                                | 0.0088                           | 0.0418 | 0.0542 | 0.0001  | 0.0023 | 7.2481   | 0.0008  |  |  |  |  |
| Concrete/Industrial Saws                     | 0.0756                           | 0.3936 | 0.4589 | 0.0007  | 0.0336 | 58.4637  | 0.0068  |  |  |  |  |
| Cranes                                       | 0.1137                           | 0.4263 | 0.9387 | 0.0014  | 0.0388 | 128.6292 | 0.0103  |  |  |  |  |
| Crawler Tractors/Dozers                      | 0.1335                           | 0.5549 | 0.9315 | 0.0013  | 0.0546 | 114.0188 | 0.0120  |  |  |  |  |
| Crushing/Processing Eq.                      | 0.1337                           | 0.6461 | 0.8965 | 0.0015  | 0.0538 | 132.3090 | 0.0121  |  |  |  |  |
| Dumpers/Tenders                              | 0.0093                           | 0.0314 | 0.0587 | 0.0001  | 0.0024 | 7.6244   | 0.0008  |  |  |  |  |
| Excavators                                   | 0.0988                           | 0.5213 | 0.6603 | 0.0013  | 0.0332 | 119.5800 | 0.0089  |  |  |  |  |
| Forklifts                                    | 0.0427                           | 0.2190 | 0.2816 | 0.0006  | 0.0137 | 54.3958  | 0.0039  |  |  |  |  |
| Generator Sets                               | 0.0581                           | 0.2862 | 0.4370 | 0.0007  | 0.0241 | 60.9927  | 0.0052  |  |  |  |  |
| Graders                                      | 0.1197                           | 0.5883 | 0.8866 | 0.0015  | 0.0441 | 132.7430 | 0.0108  |  |  |  |  |
| Off-Highway Tractors                         | 0.1803                           | 0.7067 | 1.4108 | 0.0017  | 0.0670 | 151.4197 | 0.0163  |  |  |  |  |
| Off-Highway Trucks                           | 0.1816                           | 0.5831 | 1.3322 | 0.0027  | 0.0459 | 260.0516 | 0.0164  |  |  |  |  |
| Other Diesel Construction Eq.                | 0.0720                           | 0.3602 | 0.5680 | 0.0013  | 0.0234 | 122.5629 | 0.0065  |  |  |  |  |
| Other General Industrial Eq.                 | 0.1267                           | 0.4731 | 1.0122 | 0.0016  | 0.0425 | 152.2399 | 0.0114  |  |  |  |  |
| Other Material Handling Eq.                  | 0.1202                           | 0.4608 | 0.9913 | 0.0015  | 0.0411 | 141.1941 | 0.0108  |  |  |  |  |
| Pavers                                       | 0.1269                           | 0.5135 | 0.7128 | 0.0009  | 0.0489 | 77.9335  | 0.0114  |  |  |  |  |
| Paving Eq. Other                             | 0.0965                           | 0.4198 | 0.6393 | 0.0008  | 0.0436 | 68.9412  | 0.0087  |  |  |  |  |
| Plate Compactors                             | 0.0050                           | 0.0263 | 0.0314 | 0.0001  | 0.0012 | 4.3138   | 0.0005  |  |  |  |  |
| Pressure Washers                             | 0.0121                           | 0.0579 | 0.0764 | 0.0001  | 0.0044 | 9.4135   | 0.0011  |  |  |  |  |
| Pumps                                        | 0.0562                           | 0.2785 | 0.3830 | 0.0006  | 0.0239 | 49.6067  | 0.0051  |  |  |  |  |
| Roller Compactors                            | 0.0792                           | 0.3944 | 0.5273 | 0.0008  | 0.0353 | 67.0483  | 0.0071  |  |  |  |  |
| Rough Terrain Forklifts                      | 0.0775                           | 0.4549 | 0.5104 | 0.0008  | 0.0372 | 70.2808  | 0.0070  |  |  |  |  |
| Rubber Tired Dozers                          | 0.2591                           | 0.9834 | 2.0891 | 0.0025  | 0.0858 | 239.0905 | 0.0234  |  |  |  |  |
| Rubber Tires Loaders                         | 0.0983                           | 0.4557 | 0.7114 | 0.0012  | 0.0375 | 108.6114 | 0.0089  |  |  |  |  |
| Scrapers                                     | 0.2383                           | 0.9053 | 1.9017 | 0.0027  | 0.0783 | 262.4900 | 0.0215  |  |  |  |  |
| Signal Boards                                | 0.0161                           | 0.0921 | 0.1172 | 0.0002  | 0.0060 | 16.6983  | 0.0014  |  |  |  |  |
| Skid Steer Loaders                           | 0.0305                           | 0.2184 | 0.2044 | 0.0004  | 0.0106 | 30.2770  | 0.0028  |  |  |  |  |
| Surfacing Eq.                                | 0.1045                           | 0.4506 | 0.9731 | 0.0017  | 0.0353 | 165.9721 | 0.0094  |  |  |  |  |
| Sweepers/Scrubbers                           | 0.0810                           | 0.4988 | 0.5192 | 0.0009  | 0.0332 | 78.5433  | 0.0073  |  |  |  |  |
| Tractors                                     | 0.0610                           | 0.3689 | 0.4070 | 0.0008  | 0.0258 | 66.7979  | 0.0055  |  |  |  |  |
| Front End Loaders                            | 0.0610                           | 0.3689 | 0.4070 | 0.0008  | 0.0258 | 66.7979  | 0.0055  |  |  |  |  |
| Backhoes                                     | 0.0610                           | 0.3689 | 0.4070 | 0.0008  | 0.0258 | 66.7979  | 0.0055  |  |  |  |  |
| Trenchers                                    | 0.1200                           | 0.4479 | 0.5719 | 0.0007  | 0.0453 | 58.7146  | 0.0108  |  |  |  |  |
| Welders                                      | 0.0482                           | 0.1951 | 0.2173 | 0.0003  | 0.0168 | 25.6027  | 0.0044  |  |  |  |  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771                           | 0.3855 | 1.08   | 0.00014 | 0.1542 | 14.1565  | 0.00037 |  |  |  |  |
| (gasoline EFs: EPA OMS-AMD Report NR-009A    |                                  |        |        |         | 2016)  |          |         |  |  |  |  |

(gasoline EFs: EPA OMS-AMD Report NR-009A, 2-13-98, and SCAQMD EMFAC 2007 CEQA Tables, 2016.)

#### Construction Period Emissions, lbs

| Туре                          |      |       |       |       |      |            |               |       |
|-------------------------------|------|-------|-------|-------|------|------------|---------------|-------|
|                               | VOC  | СО    | NOx   | SOx   | PM10 | <b>CO2</b> | CH4           |       |
| Aerial Lifts                  | 22   | 102   | 140   | 0     | 8    | 19583      | 2             |       |
| Air Compressors               | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Bore-Drill Rigs               | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Cement Mixers                 | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Concrete/Industrial Saws      | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Cranes                        | 21   | 80    | 176   | 0     | 7    | 24182      | 2             |       |
| Crawler Tractors/Dozers       | 589  | 2447  | 4108  | 6     | 241  | 502823     | 53            |       |
| Crushing/Processing Eq.       | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Dumpers/Tenders               | 87   | 296   | 553   | 1     | 22   | 71730      | 8             |       |
| Excavators                    | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Forklifts                     | 410  | 2102  | 2703  | 6     | 131  | 522199     | 37            |       |
| Generator Sets                | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Graders                       | 452  | 2224  | 3351  | 6     | 167  | 501768     | 41            |       |
| Off-Highway Tractors          | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Off-Highway Trucks            | 3357 | 10775 | 24619 | 49    | 848  | 4805753    | 303           |       |
| Other Diesel Construction Eq. | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Other General Industrial Eq.  | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Other Material Handling Eq.   | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Pavers                        | 14   | 58    | 80    | 0     | 5    | 8729       | 1             |       |
| Paving Eq. Other              | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Plate Compactors              | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Pressure Washers              | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Pumps                         | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Roller Compactors             | 23   | 116   | 155   | 0     | 10   | 19712      | 2             |       |
| Rough Terrain Forklifts       | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Rubber Tired Dozers           | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Rubber Tires Loaders          | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Scrapers                      | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Signal Boards                 | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Skid Steer Loaders            | 40   | 287   | 269   | 0     | 14   | 39845      | 4             |       |
| Surfacing Eq.                 | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Sweepers/Scrubbers            | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Tractors                      | 209  | 1265  | 1396  | 3     | 89   | 229117     | 19            |       |
| Front End Loaders             | 35   | 214   | 236   | 0     | 15   | 38810      | 3             |       |
| Backhoes                      | 39   | 233   | 257   | 0     | 16   | 42216      | 3             |       |
| Trenchers                     | 1128 | 4211  | 5376  | 7     | 426  | 551918     | 102           |       |
| Welders                       | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Gasoline Const Eq.            | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Totals                        | VOC  | СО    | NOx   | SOx   | PM10 | PM2.5      | CO2           | CH4   |
| lbs per const. period         | 6428 | 24410 | 43420 | 78    | 2000 | 1982.06    | 7378385       | 580   |
| tons per const. period        | 3.2  | 12.2  | 21.7  | 0.039 | 1.00 | 0.99       | 3689.19       | 0.29  |
| Average lbs/day =             | 9.7  | 37.0  | 65.8  | 0.119 | 3.03 | 3.00       | 11179.37      | 0.88  |
| Normalized TPY =              | 1.6  | 6.1   | 10.9  | 0.0   | 0.5  | 0.5        | 1844.6        | 0.1   |
|                               |      |       |       |       |      |            | CO2e, tons/pe | eriod |

 CO2e, tons/period
 3715.1

 CO2e, tons/yr:
 1857.5

N2O 125 0.06 0.19 0.031

Other Assumptions and References:

Equip.

 Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08. Optimum trench construction progress rate is 80m (260ft) per day. Non-optimum trench construction progress rate is 30m (100 ft) per day. An average progress of 180 ft/day is used where applicable.

2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness.

A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable.

The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr.

- Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001.
- 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.
- 4. Construction schedule note: applicant data indicates a construction work day period of 8 hours
  - The equipment use rates provided by the applicant are consistent with an 8 hour workday.
- 5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.
- 6. CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

| CONSTRUCTIO<br>MRI Level 2 Ana                                                                                                                | -           |                    |                   |                  | Acres                                      | 1544           |                              |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|-------------------|------------------|--------------------------------------------|----------------|------------------------------|--------|
| A cres Subject to C                                                                                                                           |             | -                  | vites:            |                  |                                            | 154.4          |                              |        |
|                                                                                                                                               |             | 11.6               | note (10)         |                  |                                            |                |                              |        |
| Max Acres Subject to Construction Disturbance Activites on any day of this phase:<br>Emissions Factor for PM10 Uncontrolled, tons/acre/month: |             |                    |                   |                  |                                            |                | 1000 (10)                    |        |
| PM2.5 fraction of                                                                                                                             |             |                    |                   |                  |                                            | 0.12<br>0.21   |                              |        |
|                                                                                                                                               | FINITO (PE  |                    |                   |                  |                                            |                |                              |        |
| Activity Levels:                                                                                                                              |             | Hrs/Day:           |                   |                  |                                            | 8              |                              |        |
|                                                                                                                                               |             | Days/Wk:           |                   | _                |                                            | 5              |                              |        |
|                                                                                                                                               | <b>D</b> 0  | Days/Month:        | Applicant Data    | а                |                                            | 22             | 1.00                         |        |
|                                                                                                                                               |             | t Period, Months:  |                   |                  |                                            | 23             | 1.92                         | years  |
|                                                                                                                                               |             | nst Period, Days:  |                   |                  |                                            | 506            |                              |        |
| Wet Season Adju                                                                                                                               |             | •                  |                   | gure 13.2.2-1, 1 | 2/03 or CalEEMo                            | d, Appendix D  | , Table 1.1.)                |        |
| M                                                                                                                                             | lean#days/  | year with rain >=  | 0.01 inch:        |                  |                                            | 40             |                              |        |
| Μ                                                                                                                                             | lean # mont | hs/yrwithrain>=    | 0.01 inch:        |                  |                                            | 1.33           |                              |        |
| А                                                                                                                                             | djusted Cor | st Period, Months  | 5                 |                  |                                            | 23.00          |                              |        |
| A                                                                                                                                             | djusted Cor | st Period, Days:   |                   |                  |                                            | 429            |                              |        |
|                                                                                                                                               |             |                    |                   |                  |                                            |                |                              |        |
| Controlsfor Fug                                                                                                                               | itive Dust: |                    | F                 | Proposed wateri  | na cvcle:                                  | 3              | times per day                |        |
|                                                                                                                                               |             |                    |                   | -                | 5 - )                                      |                |                              |        |
|                                                                                                                                               |             | traffic to <15 mph |                   | % reduction (us  | er non-desert sites.<br>e 50% control as c |                | site). (11)(12)<br>% control |        |
|                                                                                                                                               |             |                    | ontrol % used for |                  | •                                          | 84             | % control                    |        |
|                                                                                                                                               |             | Conservative of    |                   |                  | inales.                                    |                |                              |        |
|                                                                                                                                               |             |                    |                   |                  |                                            | 0.16           | releasefraction              |        |
| Emissions: Contr                                                                                                                              |             | PM10               | PM2.5             |                  |                                            |                |                              |        |
|                                                                                                                                               | ons/month   | 0.222              | 0.047             |                  |                                            |                |                              |        |
|                                                                                                                                               | ns/period   | 5.114              | 1.074             |                  |                                            |                |                              |        |
| Max Ib                                                                                                                                        | s/day       | 20.212             | 4.245             |                  |                                            |                |                              |        |
| Soil Handling Er                                                                                                                              | •           | ut and Fill): (2)  |                   |                  |                                            |                |                              |        |
| Total cu.yds of so                                                                                                                            |             |                    | 0                 |                  | Mean annual wi                             | • •            | : (8)                        | 8.03   |
| Total tons of soil I                                                                                                                          | handled:    |                    | 0.0               |                  | Avg. Soil moistu                           | ure, %: (9)    |                              | 5      |
| Total days soil ha                                                                                                                            | ndled:      |                    | 429               |                  | Avg. Soil densit                           | y, tons/cu.yd: |                              | 1.3    |
| Tons soil/day:                                                                                                                                |             |                    | 0                 |                  | k factor for PM1                           | 0:             |                              | 0.35   |
| Control Eff, water                                                                                                                            | ing, %      |                    | 80                |                  | Number of Drop                             | s per ton:     |                              | 4      |
|                                                                                                                                               | -           | ase Fraction:      | 0.2               |                  | Calc 1                                     | wind           |                              | 1.851  |
|                                                                                                                                               |             |                    |                   |                  | Calc 2                                     | moisture       |                              | 3.607  |
| Emissions:                                                                                                                                    | PM10        | PM2.5              |                   |                  | Calc 3                                     | int            |                              | 0.513  |
| tons/period                                                                                                                                   | 0.000       | 0.000              |                   |                  | Calc 4                                     | PM10           | lb/ton                       | 0.0006 |
| tons/month                                                                                                                                    | 0.000       | 0.000              |                   |                  | PM2.5 fraction                             |                |                              | 0.0000 |
|                                                                                                                                               |             |                    |                   |                  | FIVIZ.5 Haction                            | JI FIVITU.     |                              | 0.210  |
| max Ibs/day                                                                                                                                   | 0.000       | 0.000              |                   |                  |                                            |                |                              |        |
|                                                                                                                                               |             | EmiorianaTat       | ala               |                  |                                            |                |                              |        |
|                                                                                                                                               |             | EmissionsTot       |                   | PM 10            | PM 2.5                                     |                |                              |        |
|                                                                                                                                               |             |                    | tons/period       | 5.114            | 1.074                                      |                |                              |        |

#### Methodology References:

(1) MRI Report, South Coast AQMD Project No. 95040, March 1996, Level 2 Analysis Procedure.

MRI Report uncontrolled factor of 0.11 tons/acre/month is based on 168 hours per month of const activity.

For an activity rate of ~180 hrs/month, the adjusted EF would be 0.12 tons/acre/month (uncontrolled).

(2) Soil Handling (Cut and Fill), EPA, AP-42, Section 13.2.4., 11/06.

(3) URBEMIS, Version 9.2.4, User's Manual Appendix A, page A-6.

(4) CARB Area Source Methodology, Section 7.7, 9/02.

(5) WRAP Fugitive Dust Handbook, 9/06.

(6) USEPA, AP-42, Section 13.2.3, 2/10.

(7) Estimating PM Emissions from Construction Operations, USEPA, MRI, 9/99.

(8) Wind speed data for Lemoore met station. Annual avg wind speed = 8.03 mph, % calms = 3.44%.

(9) Soil Moisture; 5% assumed avg value

(10) adjusted applicant value based on 7.5% of total acreage disturbed on any given day

(11) SCAQMD CEQA Handbook 1993.

(12) SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres, Fugitive Dust Mitigations, February 2005.

# OFFSITE PAVED ROAD FUGITIVE DUST EMISSIONS

(associated with delivery truck and worker vehicle traffic on I-5 and plant access road)

| A verage mi                                | age mileage for construction related vehicles: |                           |                           |               | miles, roundtrip distance***                                                    |
|--------------------------------------------|------------------------------------------------|---------------------------|---------------------------|---------------|---------------------------------------------------------------------------------|
| Avg weight of vehicular equipment on road: |                                                |                           |                           |               | tons (range 2 - 42 tons)                                                        |
| Road surface silt loading factor:          |                                                |                           |                           | 0.015         | g/m2 (range 0.03 - 400 g/m2)<br>Limited Access Freeway >10,000 ADT <b>(I-5)</b> |
| Particlesiz                                | e multiplier fac                               | tors:                     | PM10                      | 0.0022        | Ib/VMT                                                                          |
|                                            |                                                |                           | PM2.5                     | 0.00054       | Ib/VMT                                                                          |
|                                            |                                                |                           |                           |               |                                                                                 |
| C factors (b                               | orake and tire w                               | ear):                     | PM10                      | 0.00047       | Ib/VMT                                                                          |
|                                            |                                                |                           | PM2.5                     | 0.00036       | Ib/VMT                                                                          |
|                                            |                                                |                           |                           |               |                                                                                 |
| Avg vehicle                                | e speed on road                                | :                         |                           | 65            | mph                                                                             |
|                                            |                                                |                           |                           | 405           |                                                                                 |
| Avg. Numb                                  | per of vehicles p                              | er day:                   |                           | 195           | and as defend on a Annelis and the                                              |
| As a Alumah                                |                                                |                           |                           | 00            | calculated per Applicant da                                                     |
| Avg. Numb                                  | er of work days                                | -                         | otal vehicles per month:  | 22<br>4290    | VMT/period: 8644346.7                                                           |
| Number of                                  | work months:                                   | I                         | otal venicies per month.  | 4290<br>21.33 | adjusted for precip events                                                      |
|                                            | WORK THORITIS.                                 | Total ve                  | hicles per const period:  | 91505.7       | adjusted for presip events                                                      |
|                                            |                                                |                           |                           | 51000.7       |                                                                                 |
|                                            |                                                | PM10                      |                           |               |                                                                                 |
|                                            | Calc 1                                         | 0.022                     |                           |               |                                                                                 |
|                                            | Calc 2                                         | 4.217                     |                           |               |                                                                                 |
|                                            | Calc 3                                         | 0.0007                    | Ib/VMT                    |               |                                                                                 |
|                                            | Emissions<br>Ibs/period<br>tons/period         | PM 10<br>5818.49<br>2.909 | PM 2.5<br>983.32<br>0.492 |               |                                                                                 |

EPA, AP-42, Section 13.2.1, March 2006, updated 9/2008.

PM2.5 fraction of PM10 per CARB CEIDARs is 0.169

\*\*\* Note: avg roundtrip distance traveled by delivery or worker vehicles on freeways (I-5) and other State Routes in the project area.

Vehicles per day: worker + deliveries+staff support vehicles (averages)

# ONSITE UNPAVED ROAD FUGITIVE DUST

| Length of Unpaved Roads on Construction site:             |                                                   |                                                    |                                             | miles*                                 |                           |                           |  |
|-----------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------|----------------------------------------|---------------------------|---------------------------|--|
| Avg weight of construction                                | vehiculareo                                       | quipment on road:                                  | 4.1                                         | tons (range 2                          | - 42 tons)                |                           |  |
| Road surface silt content:<br>Road surface material mois  | 8.5<br>5                                          |                                                    | % (range 1.8 - 35%)<br>% (range 0.03 - 13%) |                                        |                           |                           |  |
| Particle size multiplier fact                             | ors:                                              | PM10<br>PM2.5                                      | k<br>1.5<br>0.15                            | a<br>0.9<br>0.9                        | b<br>0.45<br>0.45         |                           |  |
| C factors (brake and tire we                              | 0.00047<br>0.00036                                | Ib/VMT<br>Ib/VMT                                   |                                             |                                        |                           |                           |  |
| Avg construction vehicle sp                               | 5                                                 | mph (range 5-55 mph)                               |                                             |                                        |                           |                           |  |
| Avg number of construction                                | n vehicles pe                                     | er day:                                            | 74                                          | * *                                    |                           |                           |  |
| Number of construction wo                                 | 22<br>1628<br>21.33<br>85815.467                  | adjusted for p                                     |                                             | T <b>/period:</b><br>events            | 8581.5467                 |                           |  |
| Control reduction due to wa                               | •                                                 | d control, etc. =<br>Release Fraction =            | 80<br>0.8<br>0.2                            |                                        |                           |                           |  |
| Calc 1<br>Calc 2<br>Calc 3<br>Calc 4<br>Controlled Ib/VMT | PM10<br>0.733<br>1.151<br>1.266<br>1.266<br>0.253 | PM2.5<br>0.733<br>1.151<br>0.127<br>0.127<br>0.025 |                                             | Emissions<br>Ibs/period<br>tons/period | PM 10<br>2173.25<br>1.087 | PM 2.5<br>217.86<br>0.109 |  |

EPA, AP-42, Section 13.2.2, March 2006

Soil Moisture; 5% avg

Soil silt content: 8.5% per AP-42 for construction site scraper routes

\*\* const equipment plus site support pickups plus

#### CONSTRUCTION PHASE - Truck Hauling/Delivery and Site Support Vehicle Emissions All Phases

|                                    | All Phases                      |              |               |                             |            |             |            |            |             |          |              |        |
|------------------------------------|---------------------------------|--------------|---------------|-----------------------------|------------|-------------|------------|------------|-------------|----------|--------------|--------|
|                                    | Delivery/Hauling Vehicle Use Ra | ites         |               | Emissions Factors (Ibs/vmt) |            |             |            |            |             |          |              |        |
|                                    | Delivery Roundtrip Distance:    | 0            | miles         | NOx                         | CO         | VOC         | SOx        | PM10       | CO2         |          |              |        |
|                                    | Const Days per Period:          | 0            |               | 0.00625339                  | 0.00051535 | 0.00011377  | 0.000026   | 3.9844E-05 | 3.10646173  | HDDT     |              |        |
|                                    | Avg Deliveries per Day:         | 0            |               | 0.00046982                  | 0.00340025 | 7.8173E-05  | 0.000013   | 2.9202E-06 | 1.02361637  | MDGT     |              |        |
|                                    | Fraction of Deliveries-Diesel:  | 0.95         | HDDT          |                             |            | Daily Emiss | ions (lbs) |            |             |          |              |        |
|                                    | Fraction of Deliveries-Gas:     | 0.05         | MDGT          | NOx                         | СО         | VOC         | SOx        | PM 10      | CO2         | PM 2.5   |              |        |
|                                    | Total Delivery VMT:             | 1588347      | per Applicant | 0.000                       | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000    | HDDT         |        |
|                                    | Total Daily VMT-Diesel          | 0            |               | 0.000                       | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000    | MDGT         |        |
|                                    | Total Daily VMT-Gasoline        | 0            |               |                             | ٦          | ΓonsperCon  | st Period  |            |             |          |              |        |
|                                    | Total Period VMT-Diesel         | 1508929.33   | 3             | 4.718                       | 0.389      | 0.086       | 0.020      | 0.030      | 2343.7      | 0.025    | HDDT         |        |
|                                    | Total Period VMT-Gasoline       | 79417.3333   | 3             | 0.019                       | 0.135      | 0.003       | 0.001      | 0.000      | 40.6        | 0.000    | MDGT         |        |
|                                    |                                 |              |               |                             |            |             |            |            |             |          |              |        |
|                                    | Construction Site Support Vehic | le Use Rates | (LDTs)        | Daily Emissions, Ibs        |            |             |            |            |             |          |              |        |
|                                    | Gasoline Vehicle VMT Period:    | 75900        |               | NOx                         | CO         | VOC         | SOx        | PM 10      | CO2         |          |              | PM 2.5 |
|                                    | Avg Daily Gasoline VMT:         | 300          |               | 0.00040762                  | 0.00359256 | 6.9991E-05  | 0.000008   | 5.0718E-06 | 0.6541839   | lbs/vmt* | LDT gasoline |        |
|                                    | Avg Daily Diesel VMT:           | 0            |               | 0.1223                      | 1.0778     | 0.0210      | 0.0024     | 0.0015     | 196.2552    | lbs/day  | gasoline     | 0.0010 |
|                                    | Total Phase Const Days:         | 240          |               |                             |            |             |            |            |             |          |              |        |
|                                    |                                 |              |               | Tonsper Co                  | nst Period |             |            |            |             |          |              |        |
| Ref: EMFAC 2014, SJVAPCD Year 2016 |                                 |              | 0.0155        | 0.1363                      | 0.0027     | 0.0003      | 0.0002     | 24.8       | tons/period | gasoline | 0.0001       |        |
| LDT1-gas, MDV-gas, HDDT-dsl        |                                 |              |               |                             |            |             |            |            |             |          |              |        |
|                                    | See EF data in WSP Support Appe | ndix         |               |                             |            |             |            |            |             |          |              |        |
|                                    |                                 |              |               |                             |            |             |            |            |             |          |              |        |

#### Notes \*\*\*

VMT for delivery/hauling for all vehicles includes: (1) materials deliveries to site, (2) materials removal from site, other VMT as specified below.

Support Vehicle VMT: best estimate at time of filing, 10 LDT (gasoline) at 30 VMT/day

CARB-CEIDARS, Updated Fractions for PM Profiles: PM2.5 = 0.991 of PM10 for Diesel Exhaust, and 0.998 for Gasoline Vehicles.

# CONSTRUCTION PHASE - Worker Travel - Emissions

|                                           |                  |           |                                                          |             |                  |                     | 1, 1001 2020  |                  |        |  |
|-------------------------------------------|------------------|-----------|----------------------------------------------------------|-------------|------------------|---------------------|---------------|------------------|--------|--|
|                                           |                  |           |                                                          |             | LDA-gas          |                     |               |                  |        |  |
| Worker Travel to Site                     |                  |           |                                                          |             | See EF data ir   | NWSP Support /      | Appendix      |                  |        |  |
| Avg Occupancy/Vehicle:                    | 0                |           |                                                          |             |                  |                     |               |                  |        |  |
| Avg Roundtrip Distance, miles:            | 0.0              |           | Emissions Factors (Ibs/VMT)                              |             |                  |                     |               |                  |        |  |
| $A \vee g #$ of Worker Vehicles, per day: | 0                |           | NOx                                                      | CO          | VOC              | SOx                 | PM10          | CO2              |        |  |
| Avg Daily Worker VMT:                     | 0                |           | 0.00013058                                               | 0.001103197 | 2.504E-05        | 0.000007            | 0.000004      | 0.65463696       |        |  |
| Max # of Worker Vehicles, per day:        | 0                |           |                                                          |             |                  |                     |               |                  |        |  |
| Max Daily Worker VMT:                     | 0                |           |                                                          | Da          | aily Emissions   | s(lbs)              |               |                  |        |  |
| Total Const Days:                         | 240              |           | NOx                                                      | CO          | VOC              | SOx                 | PM10          | CO2              | PM2.5  |  |
| Total Const Period Worker VMT:            | 7056000          | Avg       | 0.00                                                     | 0.00        | 0.00             | 0.00                | 0.00          | 0.00             | 0.00   |  |
| VMT data supplie                          | ed by Applicant. |           |                                                          |             |                  |                     |               |                  |        |  |
|                                           |                  |           |                                                          | То          | nsperConstl      | Period              |               |                  |        |  |
|                                           |                  | Avg       | 0.461                                                    | 3.892       | 0.088            | 0.025               | 0.014         | 2309.6           | 0.000  |  |
| Worker Travel by Busing from Staging      | Area             |           |                                                          |             |                  |                     |               |                  |        |  |
| Total Bus VMT/Const Period:               | 0                | Bus Round | Bus Round Trips/Day: 0 max Ref: SJV A PCD EMFAC 2014, Ye |             |                  |                     | , Year 2016   |                  |        |  |
| Avg Bus VMT/Const Day:                    | 0                |           | bancy/Trip:                                              | 0           |                  | All other buses-DSL |               |                  |        |  |
| Max Bus VMT/Const Day:                    | 0                | ·         |                                                          |             |                  | See EF data in V    | WSP Support A | Support Appendix |        |  |
|                                           |                  |           |                                                          | Emiccio     | ns Factors (Ibs/ | \/ <b>\</b> /       |               |                  |        |  |
| # buses supplied by Applicant.            |                  |           | NOx                                                      | CO          | VOC              | SOx                 | PM10          | CO2              |        |  |
|                                           |                  |           | 0.012001                                                 | 0.001203    | 0.000458         | 0.000026            | 0.00015       | 2.734838         |        |  |
|                                           |                  |           | 0.012001                                                 | 0.001203    | 0.000400         | 0.000020            | 0.00015       | 2.704000         |        |  |
|                                           |                  |           |                                                          | Da          | aily Emissions   | (lbs)               |               |                  |        |  |
|                                           |                  |           | NOx                                                      | СО          | VOC              | SOx                 | PM 10         | CO2              | PM 2.5 |  |
|                                           |                  | Avg       | 0.00                                                     | 0.00        | 0.00             | 0.00                | 0.00          | 0.00             | 0.00   |  |
|                                           |                  | Max       | 0.00                                                     | 0.00        | 0.00             | 0.00                | 0.00          | 0.00             | 0.00   |  |
|                                           |                  |           |                                                          |             | Tonsper Cor      | nst Period          |               |                  |        |  |
|                                           |                  | Avg       | 0.000                                                    | 0.000       | 0.000            | 0.000               | 0.000         | 0.000            | 0.000  |  |

Ref: SJVAPCD EMFAC 2014, Year 2020

#### **CONSTRUCTION PHASE - Trackout Emissions**

| Paved Road Length (miles):       | 0.1          |                 |                          |                 |             |  |  |
|----------------------------------|--------------|-----------------|--------------------------|-----------------|-------------|--|--|
| Daily # of Vehicles:             | 74           |                 |                          |                 |             |  |  |
| Avg Vehicle Weight (tons):       | 6.8          |                 | PM 10                    | PM 2.5*         |             |  |  |
| Total Unadjusted VMT/day         | 7.4          |                 | 0.361                    |                 |             |  |  |
| Particle Size Multipliers        | PM10         |                 | 1.924                    |                 |             |  |  |
| Ib/VMT                           | 0.023        |                 | 0.002                    | 0.0004          | Ib/VMT      |  |  |
| C factor, Ib/VMT                 | 0.00047      |                 | 0.129                    | 0.0217          | lbs/day     |  |  |
| Road Sfc Silt Loading (g/m^2):   | 0.56         | local X 2       | 0.001                    | 0.0002          | tons/month  |  |  |
| # of Active Trackout Points:     | 1            | **              | 0.03                     | 0.0051          | tons/period |  |  |
| Added Trackout Miles:            | PM10         |                 |                          |                 |             |  |  |
| Trackout VMT/day:                | 44           |                 | Default Silt Load Valu   | les for Paved I | Road Types  |  |  |
| Final Adjusted VMT/day           | 52           |                 | Freeway                  | 0.02 g/m2       |             |  |  |
| Final Adjusted VMT/month         | 1140         |                 | Arterial                 | 0.036 g/m2      |             |  |  |
| Final Adjusted VMT/period        | 24308        |                 | Collector                | 0.036 g/m2      |             |  |  |
| Construction days/month:         | 22           |                 | Local                    | 0.28 g/m2       |             |  |  |
| Adj. Construction months/period: | 21.33        |                 | Rural                    | 1.6 g/m2        |             |  |  |
| Control Applied to Trackout:     | Gravel entra | nce, metal clea | ning grates, water washi | ng, sweeping    |             |  |  |
| Control Efficiency, %            | 84           | 0.84            | Release Factor =         | 0.16            |             |  |  |

\* PM2.5 fraction of PM10 assumed to be 0.169 (CARB CEIDARS updated fraction values) for paved roads.

\*\* 1 controlled ingress/egress point is planned for site construction

EPA, AP-42, Section 13.2.1, Proposed revisions dated 9/2008.

Use silt loading factor from default values for road type if no site specific data is available.

Trackout effects approximately 0.05 mi. of roadway arriving and departing from the site access point.

Plant access road is already paved. Entrance will be gravelled with metal grates for take out control.

Vehicle count = delivery trucks plus site support trucks (see Unpaved Onsite tab)

Worker vehicles not counted for trackout, they will park on the site perimeter.

SGF 3

|                    |       |       |      |      |       | I       | Fug   |
|--------------------|-------|-------|------|------|-------|---------|-------|
|                    | NOx   | CO    | VOC  | SOx  | PM 10 | CO2     | PM 10 |
| on-off site travel | 2.74  | 0.92  | 0.06 | 0.01 | 0.02  | 1507    | 5.80  |
| on-site equipment  | 21.71 | 12.21 | 3.21 | 0.04 | 1.00  | 3715    |       |
| Total              | 24.45 | 13.13 | 3.28 | 0.05 | 1.02  | 5222    | 5.80  |
| Months:            | 24    |       |      |      |       |         |       |
| Max Year Months:   | 12    |       |      |      |       |         |       |
| Total per Year:    | 12.23 | 6.57  | 1.64 | 0.03 | 0.51  | 2610.84 | 2.90  |

# Tons/Period

| Fug    |  |
|--------|--|
| PM 2.5 |  |
| 1.08   |  |
| 1.08   |  |

0.54

# CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

# Project: WSP Main Site Construction-SGF 3

## Assumptions:

1. The average engines employed in construction equipment use consumes fuel at a rate of:

Ref: EPA, NR-009b Publication, November 2002.

Ref: Sacramento County APCD Const. Program Data, V. 6.0.3, 3/2007.

Ref: EPA, NR-009c Publication, EPA 420-P-04-009, April 2004.

Ref: Niland Energy Project, IID, AFC Vol 2, App A.

Ref: South Coast AQMD PR XXI, Draft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03. The above noted references present fuel consumption values which range from 0.050 to 0.064 gal/hp-hr for diesel engines used in construction related equipment. The value of 0.060 gal/hp-hr was chosen as a reasonable upper mid-range value for construction diesel emissions calculations. For gasoline the mid-range value from SCAQMD of 0.11 gal/hp-hr was used.

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:                                                                                        | 24<br>8<br>2 | months<br>hrs/day<br>years | Construction Totals: | 220<br>5280<br>660                                                     | hrs/month<br>hrs/const period<br>days/const period |  |  |
|------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|----------------------|------------------------------------------------------------------------|----------------------------------------------------|--|--|
| <ul><li>5. Anticipated Construction Start Year:</li><li>6. Maximum anticipated equipment use month is:</li></ul> |              | 2018                       |                      | N2O EF diesel, lb/gal: 0.000183<br>N2O EF gasoline, lb/gal: 0.000164   |                                                    |  |  |
|                                                                                                                  |              | n/a                        |                      | CARB, Mandatory GHG Reporting Regulation<br>Table 4, Appendix A, 2007. |                                                    |  |  |

Equipment types and use rates supplied by the Applicant.

|                                   | Weighted<br>Average | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site                    | Total   | Total Hrs<br>per Const | Total<br>HP-Hrs |
|-----------------------------------|---------------------|------------------------|-----------------|-----------------------------------------|---------|------------------------|-----------------|
| Equipment Category**              | HP                  | Project                | Hrs/day         | (each)                                  | Hrs/Day | Period                 | Period          |
| Aerial Lifts                      | 63<br>78            | 1                      | 6               | 94                                      | 6       | 564                    | 35532           |
| Air Compressors                   | 78<br>206           | 0<br>0                 | 0               | 0<br>0                                  | 0       | 0<br>0                 | 0               |
| Bore-Drill Rigs<br>Cement Mixers  | 206                 |                        | 0<br>0          | 0                                       | 0       | 0                      | 0               |
|                                   | -                   | 0                      |                 | , i i i i i i i i i i i i i i i i i i i | 0       |                        | 0               |
| Concrete/Industrial Saws          | 81                  | 0                      | 0               | 0                                       | 0       | 0                      | 0<br>42488      |
| Cranes<br>Crawler Tractors/Dozers | 226                 | 1                      | 2               | 94<br>210                               | 2       | 188                    |                 |
|                                   | 208                 | 3                      | 7               | 210                                     | 21      | 4410                   | 917280          |
| Crushing/Processing Eq.           | 85                  | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Dumpers/Tenders/Water Trucks      | 16                  | 7                      | 7               | 192                                     | 49      | 9408                   | 150528          |
| Excavators                        | 163                 | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Forklifts                         | 89                  | 8                      | 6               | 200                                     | 48      | 9600                   | 854400          |
| Generator Sets                    | 84                  | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Graders                           | 175                 | 5                      | 7               | 108                                     | 35      | 3780                   | 661500          |
| Off-Highway Tractors              | 123                 | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Off-Highway Trucks                | 400                 | 12                     | 7               | 220                                     | 84      | 18480                  | 7392000         |
| Other Diesel Construction Eq.     | 172                 | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Other General Industrial Eq.      | 88                  | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Other Material Handling Eq.       | 167                 | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Pavers                            | 126                 | 1                      | 4               | 28                                      | 4       | 112                    | 14112           |
| Paving Eq. Other                  | 131                 | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Plate Compactors                  | 8                   | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Pressure Washers                  | 13                  | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Pumps                             | 84                  | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Roller Compactors                 | 81                  | 1                      | 7               | 42                                      | 7       | 294                    | 23814           |
| Rough Terrain Forklifts           | 100                 | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Rubber Tired Dozers               | 255                 | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Rubber Tires Loaders              | 200                 | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Scrapers                          | 362                 | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Signal Boards                     | 6                   | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Skid Steer Loaders                | 65                  | 1                      | 7               | 188                                     | 7       | 1316                   | 85540           |
| Surfacing Eq.                     | 254                 | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Sweepers/Scrubbers                | 64                  | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Tractors (single                  | 98                  | 2                      | 7               | 245                                     | 14      | 3430                   | 336140          |
| Front End Loaders category)       | 98                  | 1                      | 7               | 83                                      | 7       | 581                    | 56938           |
| Backhoes                          | 98                  | 1                      | 4               | 158                                     | 4       | 632                    | 61936           |
| Trenchers                         | 81                  | 10                     | 4               | 235                                     | 40      | 9400                   | 761400          |
| Welders                           | 46                  | 0                      | 0               | 0                                       | 0       | 0                      | 0               |
| Gasoline Const Eq.                | 175                 | 0                      | 0               | 0                                       | 0       | 0                      | 0               |

| Const Period Diesel Hp-Hrs =     | 11393608 |      |
|----------------------------------|----------|------|
| Const Period Gasoline Hp-Hrs =   | 0        |      |
| Const Period Diesel Fuel Use =   | 683616   | gals |
| Const Period Gasoline Fuel Use = | 0        | gals |

gal/hp-hr

gal/hp-hr

0.06

0.11

diesel

gasoline

Offroad equipment emissions factors derived SCAQMD Off Road database for 2016.

The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              | 2016 Equipment Emissions Factors |        |        |         |        |          |         |  |  |
|----------------------------------------------|----------------------------------|--------|--------|---------|--------|----------|---------|--|--|
| Equip.                                       | lbs/hr                           | lbs/hr | lbs/hr | lbs/hr  | lbs/hr | lbs/hr   | lbs/hr  |  |  |
| Туре                                         | VOC (ROG)                        | CO     | NOx    | SOx     | PM10   | CO2      | CH4     |  |  |
| Aerial Lifts                                 | 0.0397                           | 0.1800 | 0.2482 | 0.0004  | 0.0150 | 34.7217  | 0.0036  |  |  |
| Air Compressors                              | 0.0704                           | 0.3207 | 0.4729 | 0.0007  | 0.0318 | 63.6073  | 0.0064  |  |  |
| Bore-Drill Rigs                              | 0.0623                           | 0.5016 | 0.5340 | 0.0017  | 0.0160 | 164.9093 | 0.0056  |  |  |
| Cement Mixers                                | 0.0088                           | 0.0418 | 0.0542 | 0.0001  | 0.0023 | 7.2481   | 0.0008  |  |  |
| Concrete/Industrial Saws                     | 0.0756                           | 0.3936 | 0.4589 | 0.0007  | 0.0336 | 58.4637  | 0.0068  |  |  |
| Cranes                                       | 0.1137                           | 0.4263 | 0.9387 | 0.0014  | 0.0388 | 128.6292 | 0.0103  |  |  |
| Crawler Tractors/Dozers                      | 0.1335                           | 0.5549 | 0.9315 | 0.0013  | 0.0546 | 114.0188 | 0.0120  |  |  |
| Crushing/Processing Eq.                      | 0.1337                           | 0.6461 | 0.8965 | 0.0015  | 0.0538 | 132.3090 | 0.0121  |  |  |
| Dumpers/Tenders                              | 0.0093                           | 0.0314 | 0.0587 | 0.0001  | 0.0024 | 7.6244   | 0.0008  |  |  |
| Excavators                                   | 0.0988                           | 0.5213 | 0.6603 | 0.0013  | 0.0332 | 119.5800 | 0.0089  |  |  |
| Forklifts                                    | 0.0427                           | 0.2190 | 0.2816 | 0.0006  | 0.0137 | 54.3958  | 0.0039  |  |  |
| Generator Sets                               | 0.0581                           | 0.2862 | 0.4370 | 0.0007  | 0.0241 | 60.9927  | 0.0052  |  |  |
| Graders                                      | 0.1197                           | 0.5883 | 0.8866 | 0.0015  | 0.0441 | 132.7430 | 0.0108  |  |  |
| Off-Highway Tractors                         | 0.1803                           | 0.7067 | 1.4108 | 0.0017  | 0.0670 | 151.4197 | 0.0163  |  |  |
| Off-Highway Trucks                           | 0.1816                           | 0.5831 | 1.3322 | 0.0027  | 0.0459 | 260.0516 | 0.0164  |  |  |
| Other Diesel Construction Eq.                | 0.0720                           | 0.3602 | 0.5680 | 0.0013  | 0.0234 | 122.5629 | 0.0065  |  |  |
| Other General Industrial Eq.                 | 0.1267                           | 0.4731 | 1.0122 | 0.0016  | 0.0425 | 152.2399 | 0.0114  |  |  |
| Other Material Handling Eq.                  | 0.1202                           | 0.4608 | 0.9913 | 0.0015  | 0.0411 | 141.1941 | 0.0108  |  |  |
| Pavers                                       | 0.1269                           | 0.5135 | 0.7128 | 0.0009  | 0.0489 | 77.9335  | 0.0114  |  |  |
| Paving Eq. Other                             | 0.0965                           | 0.4198 | 0.6393 | 0.0008  | 0.0436 | 68.9412  | 0.0087  |  |  |
| Plate Compactors                             | 0.0050                           | 0.0263 | 0.0314 | 0.0001  | 0.0012 | 4.3138   | 0.0005  |  |  |
| Pressure Washers                             | 0.0121                           | 0.0579 | 0.0764 | 0.0001  | 0.0044 | 9.4135   | 0.0011  |  |  |
| Pumps                                        | 0.0562                           | 0.2785 | 0.3830 | 0.0006  | 0.0239 | 49.6067  | 0.0051  |  |  |
| Roller Compactors                            | 0.0792                           | 0.3944 | 0.5273 | 0.0008  | 0.0353 | 67.0483  | 0.0071  |  |  |
| Rough Terrain Forklifts                      | 0.0775                           | 0.4549 | 0.5104 | 0.0008  | 0.0372 | 70.2808  | 0.0070  |  |  |
| Rubber Tired Dozers                          | 0.2591                           | 0.9834 | 2.0891 | 0.0025  | 0.0858 | 239.0905 | 0.0234  |  |  |
| Rubber Tires Loaders                         | 0.0983                           | 0.4557 | 0.7114 | 0.0012  | 0.0375 | 108.6114 | 0.0089  |  |  |
| Scrapers                                     | 0.2383                           | 0.9053 | 1.9017 | 0.0027  | 0.0783 | 262.4900 | 0.0215  |  |  |
| Signal Boards                                | 0.0161                           | 0.0921 | 0.1172 | 0.0002  | 0.0060 | 16.6983  | 0.0014  |  |  |
| Skid Steer Loaders                           | 0.0305                           | 0.2184 | 0.2044 | 0.0004  | 0.0106 | 30.2770  | 0.0028  |  |  |
| Surfacing Eq.                                | 0.1045                           | 0.4506 | 0.9731 | 0.0017  | 0.0353 | 165.9721 | 0.0094  |  |  |
| Sweepers/Scrubbers                           | 0.0810                           | 0.4988 | 0.5192 | 0.0009  | 0.0332 | 78.5433  | 0.0073  |  |  |
| Tractors                                     | 0.0610                           | 0.3689 | 0.4070 | 0.0008  | 0.0258 | 66.7979  | 0.0055  |  |  |
| Front End Loaders                            | 0.0610                           | 0.3689 | 0.4070 | 0.0008  | 0.0258 | 66.7979  | 0.0055  |  |  |
| Backhoes                                     | 0.0610                           | 0.3689 | 0.4070 | 0.0008  | 0.0258 | 66.7979  | 0.0055  |  |  |
| Trenchers                                    | 0.1200                           | 0.4479 | 0.5719 | 0.0007  | 0.0453 | 58.7146  | 0.0108  |  |  |
| Welders                                      | 0.0482                           | 0.1951 | 0.2173 | 0.0003  | 0.0168 | 25.6027  | 0.0044  |  |  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771                           | 0.3855 | 1.08   | 0.00014 | 0.1542 | 14.1565  | 0.00037 |  |  |
| (gasoline EFs: EPA OMS-AMD Report NR-009A    |                                  |        |        |         | 2016)  |          |         |  |  |

(gasoline EFs: EPA OMS-AMD Report NR-009A, 2-13-98, and SCAQMD EMFAC 2007 CEQA Tables, 2016.)

#### Construction Period Emissions, lbs

| Туре                          |      |       |       |       |      |            |               |       |
|-------------------------------|------|-------|-------|-------|------|------------|---------------|-------|
|                               | VOC  | СО    | NOx   | SOx   | PM10 | <b>CO2</b> | CH4           |       |
| Aerial Lifts                  | 22   | 102   | 140   | 0     | 8    | 19583      | 2             |       |
| Air Compressors               | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Bore-Drill Rigs               | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Cement Mixers                 | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Concrete/Industrial Saws      | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Cranes                        | 21   | 80    | 176   | 0     | 7    | 24182      | 2             |       |
| Crawler Tractors/Dozers       | 589  | 2447  | 4108  | 6     | 241  | 502823     | 53            |       |
| Crushing/Processing Eq.       | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Dumpers/Tenders               | 87   | 296   | 553   | 1     | 22   | 71730      | 8             |       |
| Excavators                    | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Forklifts                     | 410  | 2102  | 2703  | 6     | 131  | 522199     | 37            |       |
| Generator Sets                | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Graders                       | 452  | 2224  | 3351  | 6     | 167  | 501768     | 41            |       |
| Off-Highway Tractors          | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Off-Highway Trucks            | 3357 | 10775 | 24619 | 49    | 848  | 4805753    | 303           |       |
| Other Diesel Construction Eq. | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Other General Industrial Eq.  | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Other Material Handling Eq.   | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Pavers                        | 14   | 58    | 80    | 0     | 5    | 8729       | 1             |       |
| Paving Eq. Other              | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Plate Compactors              | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Pressure Washers              | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Pumps                         | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Roller Compactors             | 23   | 116   | 155   | 0     | 10   | 19712      | 2             |       |
| Rough Terrain Forklifts       | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Rubber Tired Dozers           | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Rubber Tires Loaders          | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Scrapers                      | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Signal Boards                 | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Skid Steer Loaders            | 40   | 287   | 269   | 0     | 14   | 39845      | 4             |       |
| Surfacing Eq.                 | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Sweepers/Scrubbers            | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Tractors                      | 209  | 1265  | 1396  | 3     | 89   | 229117     | 19            |       |
| Front End Loaders             | 35   | 214   | 236   | 0     | 15   | 38810      | 3             |       |
| Backhoes                      | 39   | 233   | 257   | 0     | 16   | 42216      | 3             |       |
| Trenchers                     | 1128 | 4211  | 5376  | 7     | 426  | 551918     | 102           |       |
| Welders                       | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Gasoline Const Eq.            | 0    | 0     | 0     | 0     | 0    | 0          | 0             |       |
| Totals                        | VOC  | СО    | NOx   | SOx   | PM10 | PM2.5      | CO2           | CH4   |
| lbs per const. period         | 6428 | 24410 | 43420 | 78    | 2000 | 1982.06    | 7378385       | 580   |
| tons per const. period        | 3.2  | 12.2  | 21.7  | 0.039 | 1.00 | 0.99       | 3689.19       | 0.29  |
| Average lbs/day =             | 9.7  | 37.0  | 65.8  | 0.119 | 3.03 | 3.00       | 11179.37      | 0.88  |
| Normalized TPY =              | 1.6  | 6.1   | 10.9  | 0.0   | 0.5  | 0.5        | 1844.6        | 0.1   |
|                               |      |       |       |       |      |            | CO2e, tons/pe | eriod |

 CO2e, tons/period
 3715.1

 CO2e, tons/yr:
 1857.5

N2O 125 0.06 0.19 0.031

Other Assumptions and References:

Equip.

 Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08. Optimum trench construction progress rate is 80m (260ft) per day. Non-optimum trench construction progress rate is 30m (100 ft) per day. An average progress of 180 ft/day is used where applicable.

2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness.

A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable.

The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr.

- Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001.
- 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.
- 4. Construction schedule note: applicant data indicates a construction work day period of 8 hours
  - The equipment use rates provided by the applicant are consistent with an 8 hour workday.
- 5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.
- 6. CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

| CONSTRUCTIO        | ON PHASE       | - SGF 3             |                    |                               |                      |                 |                 |        |
|--------------------|----------------|---------------------|--------------------|-------------------------------|----------------------|-----------------|-----------------|--------|
| MRI Level 2 Ana    | alysis(Refs    | 1, 3-7)             |                    |                               | Acres                | 1059            |                 |        |
| Acres Subject to ( | Construction   | Disturbance Acti    | vites:             |                               |                      | 105.9           |                 |        |
| Max Acres Subje    | ct to Constru  | uction Disturbance  | Activites on any   | on any day of this phase: 7.9 |                      |                 | note (10)       |        |
| Emissions Factor   | for PM10 U     | ncontrolled, tons/a | acre/month:        |                               |                      | 0.12            |                 |        |
| PM2.5 fraction of  | PM10 (per      | CARB CEIDARS        | SProfiles):        |                               |                      | 0.21            |                 |        |
| Activity Levels:   |                | Hrs/Day:            |                    |                               |                      | 8               |                 |        |
|                    |                | Days/Wk:            |                    |                               |                      | 5               |                 |        |
|                    |                | Days/Month:         | Applicant Data     |                               |                      | 22              |                 |        |
|                    | Phase Cons     | t Period, Months:   |                    |                               |                      | 23              | 1.92            | years  |
|                    | Phase Co       | nst Period, Days:   |                    |                               |                      | 506             |                 |        |
| Wet Season Adju    | ustment:       | (Per AP-42, Se      | ction 13.2.2, Figu | ıre 13.2.2-1, 1               | 2/03 or CalEEMo      | d, Appendix D   | Table 1.1.)     |        |
| Ν                  | 1ean#days/     | year with rain >= 0 | 0.01 inch:         |                               |                      | 40              |                 |        |
| N                  | 1ean # montl   | hs/yr with rain >=  | 0.01 inch:         |                               |                      | 1.33            |                 |        |
| A                  | djusted Con    | st Period, Months   | C                  |                               |                      | 23.00           |                 |        |
| A                  | djusted Con    | nst Period, Days:   |                    |                               |                      | 429             |                 |        |
|                    |                |                     |                    |                               |                      |                 |                 |        |
| Controlsfor Fug    | jitive Dust:   |                     | Pro                | oposed wateri                 | ng cycle:            | 3               | times per day   |        |
|                    |                |                     |                    |                               |                      |                 |                 |        |
|                    |                |                     |                    |                               | or non-desert sites. |                 |                 |        |
| Speed control of c | onsite const t |                     |                    |                               | e 50% control as c   | onservative for | site). (11)(12) |        |
|                    |                | Calculated %        | control based on i | mitigationspr                 | oposed:              | 84              | % control       |        |
|                    |                | Conservative co     | ontrol % used for  | emissions est                 | imates:              | 84              | % control       |        |
|                    |                |                     |                    |                               |                      | 0.16            | releasefraction |        |
| Emissions: Cont    | rolled         | PM10                | PM2.5              |                               |                      |                 |                 |        |
|                    | ons/month      | 0.152               | 0.032              |                               |                      |                 |                 |        |
|                    | ons/period     | 3.507               | 0.737              |                               |                      |                 |                 |        |
| Max Ib             | os/day         | 13.863              | 2.911              |                               |                      |                 |                 |        |
|                    |                |                     |                    |                               |                      |                 |                 |        |
| Soil Handling Er   | •              | ut and Fill): (2)   | 0                  |                               |                      |                 |                 | 0.00   |
| Total cu.yds of so |                |                     | 0                  |                               | Mean annual wi       | •               | (8)             | 8.03   |
| Total tons of soil |                |                     | 0.0                |                               | Avg. Soil moist      |                 |                 | 5      |
| Total days soil ha | nalea:         |                     | 429                |                               | Avg. Soil densit     |                 |                 | 1.3    |
| Tons soil/day:     | 0/             |                     | 0                  |                               | k factor for PM      |                 |                 | 0.35   |
| Control Eff, wate  | •              | <b></b>             | 80                 |                               | Number of Drop       | •               |                 | 4      |
|                    | Ree            | ase Fraction:       | 0.2                |                               | Calc 1               | wind            |                 | 1.851  |
|                    |                |                     |                    |                               | Calc 2               | moisture        |                 | 3.607  |
| Emissions:         | PM10           | PM2.5               |                    |                               | Calc 3               | int             | 11- /4          | 0.513  |
| tons/period        | 0.000          | 0.000               |                    |                               | Calc 4               | PM10            | lb/ton          | 0.0006 |
| tons/month         | 0.000          | 0.000               |                    |                               | PM2.5 fraction       | of PIVITU:      |                 | 0.210  |
| max Ibs/day        | 0.000          | 0.000               |                    |                               |                      |                 |                 |        |
|                    |                | EmissionsTota       | ale                | PM 10                         | PM 2.5               |                 |                 |        |
|                    |                |                     | tons/period        | 3.507                         | 0.737                |                 |                 |        |
|                    |                |                     |                    | 5.507                         | 0.131                |                 |                 |        |

#### Methodology References:

(1) MRI Report, South Coast AQMD Project No. 95040, March 1996, Level 2 Analysis Procedure.

MRI Report uncontrolled factor of 0.11 tons/acre/month is based on 168 hours per month of const activity.

For an activity rate of ~180 hrs/month, the adjusted EF would be 0.12 tons/acre/month (uncontrolled).

(2) Soil Handling (Cut and Fill), EPA, AP-42, Section 13.2.4., 11/06.

(3) URBEMIS, Version 9.2.4, User's Manual Appendix A, page A-6.

(4) CARB Area Source Methodology, Section 7.7, 9/02.

(5) WRAP Fugitive Dust Handbook, 9/06.

(6) USEPA, AP-42, Section 13.2.3, 2/10.

(7) Estimating PM Emissions from Construction Operations, USEPA, MRI, 9/99.

(8) Wind speed data for Lemoore met station. Annual avg wind speed = 8.03 mph, % calms = 3.44%.

(9) Soil Moisture; 5% assumed avg value

(10) adjusted applicant value based on 7.5% of total acreage disturbed on any given day

(11) SCAQMD CEQA Handbook 1993.

(12) SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres, Fugitive Dust Mitigations, February 2005.

# OFFSITE PAVED ROAD FUGITIVE DUST EMISSIONS

(associated with delivery truck and worker vehicle traffic on I-5 and plant access road)

| Average mileage for construction related vehicles: |                  |          |                          |         | miles, roundtrip distance***                                                    |
|----------------------------------------------------|------------------|----------|--------------------------|---------|---------------------------------------------------------------------------------|
| Avg weight of vehicular equipment on road:         |                  |          |                          |         | tons (range 2 - 42 tons)                                                        |
| Road surface silt loading factor:                  |                  |          |                          |         | g/m2 (range 0.03 - 400 g/m2)<br>Limited Access Freeway >10,000 ADT <b>(I-5)</b> |
| Particlesize                                       | e multiplier fac | tors:    | PM10                     | 0.0022  | Ib/VMT                                                                          |
|                                                    |                  |          | PM2.5                    | 0.00054 | Ib/VMT                                                                          |
|                                                    |                  |          |                          |         |                                                                                 |
| C factors (b                                       | orake and tire w | ear):    | PM10                     | 0.00047 | Ib/VMT                                                                          |
| · ·                                                |                  | ,        | PM2.5                    | 0.00036 | Ib/VMT                                                                          |
|                                                    |                  |          |                          |         |                                                                                 |
| Avg vehicle                                        | e speed on road  | :        |                          | 65      | mph                                                                             |
|                                                    |                  |          |                          |         |                                                                                 |
| Avg. Numb                                          | er of vehicles p | er day:  |                          | 195     |                                                                                 |
|                                                    |                  |          |                          |         | calculated per Applicant da                                                     |
| Avg. Numb                                          | er of work days  | •        |                          | 22      | VMT/period: 4887976.5                                                           |
|                                                    |                  | Т        | otal vehicles per month: | 4290    |                                                                                 |
| Number of                                          | work months:     |          |                          | 21.33   | adjusted for precip events                                                      |
|                                                    |                  | Total ve | hicles per const period: | 91505.7 |                                                                                 |
|                                                    |                  |          |                          |         |                                                                                 |
|                                                    |                  | PM10     |                          |         |                                                                                 |
|                                                    | Calc 1           | 0.022    |                          |         |                                                                                 |
|                                                    | Calc 2           | 4.217    |                          |         |                                                                                 |
|                                                    | Calc 3           | 0.0007   | lb/VMT                   |         |                                                                                 |
|                                                    | Emissions        | PM 10    | PM 2.5                   |         |                                                                                 |
|                                                    | lbs/period       | 3290.09  | 556.02                   |         |                                                                                 |
|                                                    | tons/period      | 1.645    | 0.278                    |         |                                                                                 |
|                                                    |                  |          | 0.210                    |         |                                                                                 |

EPA, AP-42, Section 13.2.1, March 2006, updated 9/2008.

PM2.5 fraction of PM10 per CARB CEIDARs is 0.169

\*\*\* Note: avg roundtrip distance traveled by delivery or worker vehicles on freeways (I-5) and other State Routes in the project area.

Vehicles per day: worker + deliveries+staff support vehicles (averages)

# ONSITE UNPAVED ROAD FUGITIVE DUST

| Length of Unpaved Roads                                  | 0.1                                                        | miles*                                      |                                                          |                                        |                           |                           |  |  |
|----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------|----------------------------------------|---------------------------|---------------------------|--|--|
| Avg weight of construction                               | 4.1                                                        | tons (range 2 - 42 tons)                    |                                                          |                                        |                           |                           |  |  |
| Road surface silt content:<br>Road surface material mois | 8.5<br>5                                                   | % (range 1.8 - 35%)<br>% (range 0.03 - 13%) |                                                          |                                        |                           |                           |  |  |
| Particle size multiplier fact                            | ors:                                                       | PM10<br>PM2.5                               | k<br>1.5<br>0.15                                         | a<br>0.9<br>0.9                        | b<br>0.45<br>0.45         |                           |  |  |
| C factors (brake and tire we                             | ear):                                                      | PM10<br>PM2.5                               | 0.00047<br>0.00036                                       | Ib/VMT<br>Ib/VMT                       |                           |                           |  |  |
| Avg construction vehicle sp                              | ł:                                                         | 5                                           | mph (range 5-55 mph)                                     |                                        |                           |                           |  |  |
| Avg number of construction                               | er day:                                                    | 74                                          | * *                                                      |                                        |                           |                           |  |  |
| Number of construction wo                                | month:<br>I vehicles per month:<br>icles per const period: | 22<br>1628<br>21.33<br>48564.9              | VMT/period: 4856.44<br>adjusted for precipitation events |                                        |                           |                           |  |  |
| Control reduction due to wa                              |                                                            | 80                                          |                                                          |                                        |                           |                           |  |  |
|                                                          |                                                            | Release Fraction =                          | 0.8<br>0.2                                               |                                        |                           |                           |  |  |
| Calc 1<br>Calc 2<br>Calc 3                               | PM10<br>0.733<br>1.151                                     | PM2.5<br>0.733<br>1.151                     |                                                          | Emissions<br>Ibs/period<br>tons/period | PM 10<br>1229.89<br>0.615 | PM 2.5<br>123.29<br>0.062 |  |  |

EPA, AP-42, Section 13.2.2, March 2006

Soil Moisture; 5% avg

Soil silt content: 8.5% per AP-42 for construction site scraper routes

\*\* const equipment plus site support pickups plus

# CONSTRUCTION PHASE - Truck Hauling/Delivery and Site Support Vehicle Emissions

| All Phases                         |                      |                             |            |            |             |            |            |            |             |              |        |
|------------------------------------|----------------------|-----------------------------|------------|------------|-------------|------------|------------|------------|-------------|--------------|--------|
| Delivery/Hauling Vehicle Use       |                      | Emissions Factors (Ibs/vmt) |            |            |             |            |            |            |             |              |        |
| Delivery Roundtrip Distance:       | 0                    | miles                       | NOx        | CO         | VOC         | SOx        | PM10       | CO2        |             |              |        |
| Const Days per Period:             | 0                    |                             | 0.00625339 | 0.00051535 | 0.00011377  | 0.000026   | 3.9844E-05 | 3.10646173 | HDDT        |              |        |
| Avg Deliveries per Day:            | 0                    |                             | 0.00046982 | 0.00340025 | 7.8173E-05  | 0.000013   | 2.9202E-06 | 1.02361637 | MDGT        |              |        |
| Fraction of Deliveries-Diesel:     | 0.95                 | HDDT                        |            |            | Daily Emise | ions (lbs) |            |            |             |              |        |
| Fraction of Deliveries-Gas:        | 0.05                 | MDGT                        | NOx        | СО         | VOC         | SOx        | PM 10      | CO2        | PM 2.5      |              |        |
| Total Delivery VMT:                | 894677               | per Applicant               | 0.000      | 0.000      | 0.000       | 0.000      | 0.000      | 0.000      | 0.000       | HDDT         |        |
| Total Daily VMT-Diesel             | 0                    |                             | 0.000      | 0.000      | 0.000       | 0.000      | 0.000      | 0.000      | 0.000       | MDGT         |        |
| Total Daily VMT-Gasoline           | 0                    |                             |            | ٦          | Tonsper Con | st Period  |            |            |             |              |        |
| Total Period VMT-Diesel            | 849942.67            | 5                           | 2.658      | 0.219      | 0.048       | 0.011      | 0.017      | 1320.2     | 0.014       | HDDT         |        |
| Total Period VMT-Gasoline          | 44733.825            | 5                           | 0.011      | 0.076      | 0.002       | 0.000      | 0.000      | 22.9       | 0.000       | MDGT         |        |
| Construction Site Support Ver      | Daily Emissions, Ibs |                             |            |            |             |            |            |            |             |              |        |
| Gasoline Vehicle VMT Period:       | 75900                |                             | NOx        | со         | voc         | SOx        | PM 10      | CO2        |             |              | PM 2.5 |
| Avg Daily Gasoline VMT:            | 300                  |                             | 0.00040762 | 0.00359256 | 6.9991E-05  | 0.000008   | 5.0718E-06 | 0.6541839  | lbs/vmt*    | LDT gasoline |        |
| Avg Daily Diesel VMT:              | 0                    |                             | 0.1223     | 1.0778     | 0.0210      | 0.0024     | 0.0015     | 196.2552   | lbs/day     | gasoline     | 0.0010 |
| Total Phase Const Days:            | 240                  |                             |            |            |             |            |            |            | -           | -            |        |
|                                    |                      |                             |            |            | Tonsper Co  | nst Period |            |            |             |              |        |
| Ref: EMFAC 2014, SJVAPCD Year 2016 |                      |                             | 0.0155     | 0.1363     | 0.0027      | 0.0003     | 0.0002     | 24.8       | tons/period | gasoline     | 0.0001 |
| LDT1-gas, MDV-gas, HDDT-dsl        |                      |                             |            |            |             |            |            |            | -           |              |        |
| See EF data in WSP Support Ap      |                      |                             |            |            |             |            |            |            |             |              |        |
|                                    |                      |                             |            |            |             |            |            |            |             |              |        |

#### Notes \*\*\*

VMT for delivery/hauling for all vehicles includes: (1) materials deliveries to site, (2) materials removal from site, other VMT as specified below.

Support Vehicle VMT: best estimate at time of filing, 10 LDT (gasoline) at 30 VMT/day

CARB-CEIDARS, Updated Fractions for PM Profiles: PM2.5 = 0.991 of PM10 for Diesel Exhaust, and 0.998 for Gasoline Vehicles.

# CONSTRUCTION PHASE - Worker Travel - Emissions

|                                      |                 |           |                                     |             | LDA-gas         |                     | 1, 100 2010 |             |        |  |  |  |
|--------------------------------------|-----------------|-----------|-------------------------------------|-------------|-----------------|---------------------|-------------|-------------|--------|--|--|--|
| Worker Travel to Site                |                 |           |                                     |             | -               | n WSP Support A     | Appendix    |             |        |  |  |  |
| Avg Occupancy/Vehicle:               | 0               |           | See EF data in WSP Support Appendix |             |                 |                     |             |             |        |  |  |  |
| Avg Roundtrip Distance, miles:       | 0.0             |           |                                     | Emissio     | ns Factors (Ibs | s∕VMT)              |             |             |        |  |  |  |
| Avg # of Worker Vehicles, per day:   | 0               |           | NOx                                 | CO          | VOC             | SOx                 | PM10        | CO2         |        |  |  |  |
| Avg Daily Worker VMT:                | 0               |           | 0.00013058                          | 0.001103197 | 2.504E-05       | 0.000007            | 0.000004    | 0.65463696  |        |  |  |  |
| Max # of Worker Vehicles, per day:   | 0               |           |                                     |             |                 |                     |             |             |        |  |  |  |
| Max Daily Worker VMT:                | 0               |           |                                     | Da          | aily Emission   | s(lbs)              |             |             |        |  |  |  |
| Total Const Days:                    | 240             |           | NOx                                 | CO          | VOC             | SOx                 | PM10        | CO2         | PM2.5  |  |  |  |
| Total Const Period Worker VMT:       | 894677          | Avg       | 0.00                                | 0.00        | 0.00            | 0.00                | 0.00        | 0.00        | 0.00   |  |  |  |
| VMT data supplie                     | ed by Applicant | •         |                                     |             |                 |                     |             |             |        |  |  |  |
|                                      |                 |           | Tons per Const Period               |             |                 |                     |             |             |        |  |  |  |
|                                      |                 | Avg       | 0.058                               | 0.494       | 0.011           | 0.003               | 0.002       | 292.8       | 0.000  |  |  |  |
| Worker Travel by Busing from Staging | Area            |           |                                     |             |                 |                     |             |             |        |  |  |  |
| Total Bus VMT/Const Period:          | 0               | Bus Round | d Trips/Day:                        | 0           | max             | Ref: SJVAPCD        | EMFAC 2014  | , Year 2016 |        |  |  |  |
| Avg Bus VMT/Const Day:               | 0               | Bus Occup | ancy/Trip:                          | 0           |                 | All other buses-DSL |             |             |        |  |  |  |
| Max Bus VMT/Const Day:               | 0               |           | See EF data in WSP Support Appendix |             |                 |                     |             |             |        |  |  |  |
|                                      |                 |           |                                     | Emissio     | ns Factors (Ibs | s∕VMT)              |             |             |        |  |  |  |
| # buses supplied by Applicant.       |                 |           | NOx                                 | CO          | VOC             | SOx                 | PM10        | CO2         |        |  |  |  |
|                                      |                 |           | 0.012001                            | 0.001203    | 0.000458        | 0.000026            | 0.00015     | 2.734838    |        |  |  |  |
|                                      |                 |           |                                     |             |                 |                     |             |             |        |  |  |  |
|                                      |                 |           | Daily Emissions (lbs)               |             |                 |                     |             |             |        |  |  |  |
|                                      |                 |           | NOx                                 | СО          | VOC             | SOx                 | PM 10       | CO2         | PM 2.5 |  |  |  |
|                                      |                 | Avg       | 0.00                                | 0.00        | 0.00            | 0.00                | 0.00        | 0.00        | 0.00   |  |  |  |
|                                      |                 | Max       | 0.00                                | 0.00        | 0.00            | 0.00                | 0.00        | 0.00        | 0.00   |  |  |  |
|                                      |                 |           | Tons per Const Period               |             |                 |                     |             |             |        |  |  |  |
|                                      |                 | Avg       | 0.000                               | 0.000       | 0.000           | 0.000               | 0.000       | 0.000       | 0.000  |  |  |  |

Ref: SJVAPCD EMFAC 2014, Year 2016

### **CONSTRUCTION PHASE - Trackout Emissions**

| Paved Road Length (miles):       | 0.1          | estimated rou   | undtrip trackout distance |                 |             |
|----------------------------------|--------------|-----------------|---------------------------|-----------------|-------------|
| Daily # of Vehicles:             | 74           |                 |                           |                 |             |
| Avg Vehicle Weight (tons):       | 6.8          |                 | PM 10                     | PM 2.5*         |             |
| Total Unadjusted VMT/day         | 7.4          |                 | 0.361                     |                 |             |
| Particle Size Multipliers        | PM10         |                 | 1.924                     |                 |             |
| Ib/VMT                           | 0.023        |                 | 0.002                     | 0.0004          | Ib/VMT      |
| C factor, Ib/VMT                 | 0.00047      |                 | 0.129                     | 0.0217          | lbs/day     |
| Road Sfc Silt Loading (g/m^2):   | 0.56         | local X 2       | 0.001                     | 0.0002          | tons/month  |
| # of Active Trackout Points:     | 1            | **              | 0.03                      | 0.0051          | tons/period |
| Added Trackout Miles:            | PM10         |                 |                           |                 |             |
| Trackout VMT/day:                | 44           |                 | Default Silt Load Valu    | les for Paved I | Road Types  |
| Final Adjusted VMT/day           | 52           |                 | Freeway                   | 0.02 g/m2       |             |
| Final Adjusted VMT/month         | 1140         |                 | Arterial                  | 0.036 g/m2      |             |
| Final Adjusted VMT/period        | 24308        |                 | Collector                 | 0.036 g/m2      |             |
| Construction days/month:         | 22           |                 | Local                     | 0.28 g/m2       |             |
| Adj. Construction months/period: | 21.33        |                 | Rural                     | 1.6 g/m2        |             |
| Control Applied to Trackout:     | Gravel entra | nce, metal clea | ning grates, water washi  | ng, sweeping    |             |
| Control Efficiency, %            | 84           | 0.84            | Release Factor =          | 0.16            |             |

\* PM2.5 fraction of PM10 assumed to be 0.169 (CARB CEIDARS updated fraction values) for paved roads.

\*\* 1 controlled ingress/egress point is planned for site construction

EPA, AP-42, Section 13.2.1, Proposed revisions dated 9/2008.

Use silt loading factor from default values for road type if no site specific data is available.

Trackout effects approximately 0.05 mi. of roadway arriving and departing from the site access point.

Plant access road is already paved. Entrance will be gravelled with metal grates for take out control.

Vehicle count = delivery trucks plus site support trucks (see Unpaved Onsite tab)

Worker vehicles not counted for trackout, they will park on the site perimeter.

SGF 4

2022

| ·                  | Tons/Per | iod   |      |      |       |         |       |        |
|--------------------|----------|-------|------|------|-------|---------|-------|--------|
|                    |          |       |      |      |       | ł       | Fug   | Fug    |
|                    | NOx      | CO    | VOC  | SOx  | PM 10 | CO2     | PM 10 | PM 2.5 |
| on-off site travel | 7.16     | 6.22  | 0.25 | 0.06 | 0.06  | 5885    | 9.86  | 1.74   |
| on-site equipment  | 5.40     | 6.84  | 1.16 | 0.02 | 0.21  | 2227    |       |        |
| Total              | 12.56    | 13.06 | 1.41 | 0.09 | 0.27  | 8111    | 9.86  | 1.74   |
| Months:            | 15.5     |       |      |      |       |         |       |        |
| Max Year Months:   | 12       |       |      |      |       |         |       |        |
| Total per Year:    | 9.72     | 10.11 | 1.09 | 0.07 | 0.21  | 6279.70 | 7.63  | 1.35   |

# CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

# WSP Main Site Construction-SGF 4

# Assumptions:

Project:

1. The average engines employed in construction equipment use consumes fuel at a rate of:

Ref: EPA, NR-009b Publication, November 2002.

Ref: Sacramento County APCD Const. Program Data, V. 6.0.3, 3/2007.

Ref: EPA, NR-009c Publication, EPA 420-P-04-009, April 2004.

Ref: Niland Energy Project, IID, AFC Vol 2, App A.

Ref: South Coast AQMD PR XXI, Draft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03. The above noted references present fuel consumption values which range from 0.050 to 0.064 gal/hp-hr for diesel engines used in construction related equipment. The value of 0.060 gal/hp-hr was chosen as a reasonable upper mid-range value for construction diesel emissions calculations. For gasoline the mid-range value from SCAQMD of 0.11 gal/hp-hr was used.

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:                      | 15.5<br>8<br>1.29 | months<br>hrs/day<br>years | Construction Totals: | 203.87097<br>3160<br>395                                               | hrs/month<br>hrs/const period<br>days/const period |  |  |  |
|------------------------------------------------|-------------------|----------------------------|----------------------|------------------------------------------------------------------------|----------------------------------------------------|--|--|--|
| 5. Anticipated Construction Start Year:        |                   | 2020                       | 7.                   | N2O EF diesel, lb/gal: 0.000183<br>N2O EF gasoline, lb/gal: 0.000164   |                                                    |  |  |  |
| 6. Maximum anticipated equipment use month is: |                   | n/a                        |                      | CARB, Mandatory GHG Reporting Regulation<br>Table 4, Appendix A, 2007. |                                                    |  |  |  |

Equipment types and use rates supplied by the Applicant.

|                               | Weighted<br>Average | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site | Total   | Total Hrs<br>per Const | Total<br>HP-Hrs |
|-------------------------------|---------------------|------------------------|-----------------|----------------------|---------|------------------------|-----------------|
| Equipment Category**          | HP                  | Project                | Hrs/day         | (each)               | Hrs/Day | Period                 | Period          |
| Aerial Lifts                  | 63                  | 1                      | 6               | 56                   | 6       | 336                    | 21168           |
| Air Compressors               | 78                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Bore-Drill Rigs               | 206                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cement Mixers                 | 9                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Concrete/Industrial Saws      | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cranes                        | 226                 | 1                      | 2               | 56                   | 2       | 112                    | 25312           |
| Crawler Tractors/Dozers       | 208                 | 3                      | 7               | 125                  | 21      | 2625                   | 546000          |
| Crushing/Processing Eq.       | 85                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Dumpers/Tenders/Water Trucks  | 16                  | 7                      | 7               | 115                  | 49      | 5635                   | 90160           |
| Excavators                    | 163                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Forklifts                     | 89                  | 8                      | 6               | 120                  | 48      | 5760                   | 512640          |
| Generator Sets                | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Graders                       | 175                 | 5                      | 7               | 65                   | 35      | 2275                   | 398125          |
| Off-Highway Tractors          | 123                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Off-Highway Trucks            | 400                 | 12                     | 7               | 132                  | 84      | 11088                  | 4435200         |
| Other Diesel Construction Eq. | 172                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other General Industrial Eq.  | 88                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other Material Handling Eq.   | 167                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pavers                        | 126                 | 1                      | 4               | 17                   | 4       | 68                     | 8568            |
| Paving Eq. Other              | 131                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Plate Compactors              | 8                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pressure Washers              | 13                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pumps                         | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Roller Compactors             | 81                  | 1                      | 7               | 25                   | 7       | 175                    | 14175           |
| Rough Terrain Forklifts       | 100                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tired Dozers           | 255                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tires Loaders          | 200                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Scrapers                      | 362                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Signal Boards                 | 6                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Skid Steer Loaders            | 65                  | 1                      | 7               | 113                  | 7       | 791                    | 51415           |
| Surfacing Eq.                 | 254                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Sweepers/Scrubbers            | 64                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Tractors                      | 98                  | 2                      | 7               | 147                  | 14      | 2058                   | 201684          |
| Front End Loaders (single     | 98                  | 1                      | 7               | 50                   | 7       | 350                    | 34300           |
| Backhoes category)            | 98                  | 1                      | 4               | 95                   | 4       | 380                    | 37240           |
| Trenchers                     | 81                  | 10                     | 4               | 141                  | 40      | 5640                   | 456840          |
| Welders                       | 46                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Gasoline Const Eq.            | 175                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |

| Const Period Diesel Hp-Hrs =     | 6832827 |      |
|----------------------------------|---------|------|
| Const Period Gasoline Hp-Hrs =   | 0       |      |
| Const Period Diesel Fuel Use =   | 409970  | gals |
| Const Period Gasoline Fuel Use = | 0       | gals |

gal/hp-hr

gal/hp-hr

0.06

0.11

diesel

gasoline

Offroad equipment emissions factors derived SCAQMD Off Road database for 2020.

The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              | 2025 Equipment Emissions Factors |        |        |         |        |          |         |  |  |
|----------------------------------------------|----------------------------------|--------|--------|---------|--------|----------|---------|--|--|
| Equip.                                       | lbs/hr                           | lbs/hr | lbs/hr | lbs/hr  | lbs/hr | lbs/hr   | lbs/hr  |  |  |
| Туре                                         | VOC (ROG)                        | CO     | NOx    | SOx     | PM10   | CO2      | CH4     |  |  |
| Aerial Lifts                                 | 0.0184                           | 0.1646 | 0.1366 | 0.0004  | 0.0048 | 34.7217  | 0.0017  |  |  |
| Air Compressors                              | 0.0349                           | 0.3027 | 0.2104 | 0.0007  | 0.0088 | 63.6073  | 0.0031  |  |  |
| Bore-Drill Rigs                              | 0.0428                           | 0.5007 | 0.2864 | 0.0017  | 0.0042 | 164.8678 | 0.0039  |  |  |
| Cement Mixers                                | 0.0085                           | 0.0414 | 0.0534 | 0.0001  | 0.0021 | 7.2481   | 0.0008  |  |  |
| Concrete/Industrial Saws                     | 0.0337                           | 0.3706 | 0.2471 | 0.0007  | 0.0093 | 58.4637  | 0.0030  |  |  |
| Cranes                                       | 0.0681                           | 0.3738 | 0.4223 | 0.0014  | 0.0143 | 128.6241 | 0.0061  |  |  |
| Crawler Tractors/Dozers                      | 0.0789                           | 0.5065 | 0.4492 | 0.0013  | 0.0227 | 114.0167 | 0.0071  |  |  |
| Crushing/Processing Eq.                      | 0.0693                           | 0.6187 | 0.3763 | 0.0015  | 0.0146 | 132.3077 | 0.0062  |  |  |
| Dumpers/Tenders                              | 0.0092                           | 0.0314 | 0.0581 | 0.0001  | 0.0022 | 7.6244   | 0.0008  |  |  |
| Excavators                                   | 0.0559                           | 0.5086 | 0.2269 | 0.0013  | 0.0086 | 119.5792 | 0.0050  |  |  |
| Forklifts                                    | 0.0236                           | 0.2148 | 0.0860 | 0.0006  | 0.0025 | 54.3958  | 0.0021  |  |  |
| Generator Sets                               | 0.0288                           | 0.2667 | 0.2329 | 0.0007  | 0.0081 | 60.9927  | 0.0026  |  |  |
| Graders                                      | 0.0676                           | 0.5696 | 0.3314 | 0.0015  | 0.0147 | 132.7431 | 0.0061  |  |  |
| Off-Highway Tractors                         | 0.1134                           | 0.6101 | 0.7291 | 0.0017  | 0.0331 | 151.3869 | 0.0102  |  |  |
| Off-Highway Trucks                           | 0.1140                           | 0.5385 | 0.4769 | 0.0027  | 0.0142 | 260.0652 | 0.0103  |  |  |
| Other Diesel Construction Eq.                | 0.0442                           | 0.3474 | 0.2021 | 0.0013  | 0.0069 | 122.5051 | 0.0040  |  |  |
| Other General Industrial Eq.                 | 0.0747                           | 0.4438 | 0.3947 | 0.0016  | 0.0130 | 152.2399 | 0.0067  |  |  |
| Other Material Handling Eq.                  | 0.0696                           | 0.4355 | 0.3844 | 0.0015  | 0.0124 | 141.1941 | 0.0063  |  |  |
| Pavers                                       | 0.0717                           | 0.4745 | 0.3858 | 0.0009  | 0.0220 | 77.9326  | 0.0065  |  |  |
| Paving Eq. Other                             | 0.0548                           | 0.3993 | 0.3281 | 0.0008  | 0.0190 | 68.9364  | 0.0049  |  |  |
| Plate Compactors                             | 0.0050                           | 0.0263 | 0.0314 | 0.0001  | 0.0012 | 4.3138   | 0.0005  |  |  |
| Pressure Washers                             | 0.0066                           | 0.0531 | 0.0561 | 0.0001  | 0.0019 | 9.4135   | 0.0006  |  |  |
| Pumps                                        | 0.0270                           | 0.2617 | 0.2079 | 0.0006  | 0.0078 | 49.6066  | 0.0024  |  |  |
| Roller Compactors                            | 0.0410                           | 0.3763 | 0.2501 | 0.0008  | 0.0122 | 67.0308  | 0.0037  |  |  |
| Rough Terrain Forklifts                      | 0.0396                           | 0.4430 | 0.2336 | 0.0008  | 0.0090 | 70.2808  | 0.0036  |  |  |
| Rubber Tired Dozers                          | 0.1672                           | 0.6620 | 1.0824 | 0.0025  | 0.0419 | 239.0780 | 0.0151  |  |  |
| Rubber Tires Loaders                         | 0.0559                           | 0.4311 | 0.2835 | 0.0012  | 0.0121 | 108.6113 | 0.0050  |  |  |
| Scrapers                                     | 0.1495                           | 0.7187 | 0.8387 | 0.0027  | 0.0335 | 262.4827 | 0.0135  |  |  |
| Signal Boards                                | 0.0111                           | 0.0909 | 0.0718 | 0.0002  | 0.0029 | 16.6983  | 0.0010  |  |  |
| Skid Steer Loaders                           | 0.0186                           | 0.2104 | 0.1354 | 0.0004  | 0.0019 | 30.2740  | 0.0017  |  |  |
| Surfacing Eq.                                | 0.0638                           | 0.3590 | 0.3924 | 0.0017  | 0.0142 | 165.9715 | 0.0058  |  |  |
| Sweepers/Scrubbers                           | 0.0410                           | 0.4840 | 0.2255 | 0.0009  | 0.0061 | 78.5433  | 0.0037  |  |  |
| Tractors                                     | 0.0336                           | 0.3586 | 0.1857 | 0.0008  | 0.0059 | 66.7965  | 0.0030  |  |  |
| Front End Loaders                            | 0.0336                           | 0.3586 | 0.1857 | 0.0008  | 0.0059 | 66.7965  | 0.0030  |  |  |
| Backhoes                                     | 0.0336                           | 0.3586 | 0.1857 | 0.0008  | 0.0059 | 66.7965  | 0.0030  |  |  |
| Trenchers                                    | 0.0674                           | 0.4085 | 0.3481 | 0.0007  | 0.0215 | 58.7116  | 0.0061  |  |  |
| Welders                                      | 0.0214                           | 0.1745 | 0.1373 | 0.0003  | 0.0052 | 25.6027  | 0.0019  |  |  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771                           | 0.3855 | 1.08   | 0.00014 | 0.1542 | 14.1565  | 0.00037 |  |  |
| (gasoline FFs: FPA OMS-AMD Report NR-009A    |                                  |        |        |         | 2016)  |          |         |  |  |

(gasoline EFs: EPA OMS-AMD Report NR-009A, 2-13-98, and SCAQMD EMFAC 2007 CEQA Tables, 2016.)

### Construction Period Emissions, lbs

| Equip.           Type         VOC         CO         NOR         SOX         PM10         CO2         CTI4           Arical Link         0         0         0         0         0         0         0         0           Air Compressors         0         0         0         0         0         0         0         0         0           Concerted Industrial Saws         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                            |                          | U   | onstruction P | erioa Emissio | ns, ibs |      |        |          |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----|---------------|---------------|---------|------|--------|----------|------|
| VOC         CO         NOx         SOx         PMI0         CO2         CH4           Air Compresors         6         55         46         0         2         11666         1           Air Compresors         0         0         0         0         0         0         0         0         0           Bort-Drill Rigs         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                     | Equip.                   |     |               |               |         |      |        |          |      |
| Arial Lifts         6         55         46         0         2         1166         1           Air Compressors         00         0         0         0         0         0         0         0         0           Cemere Mixers         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>Туре</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                       | Туре                     |     |               |               |         |      |        |          |      |
| Air Compressors         0         0         0         0         0         0         0         0           Bore-Drill Rigs         0         0         0         0         0         0         0         0         0           Comeret Mixers         0         0         0         0         0         0         0         0         0           Cranse         8         42         47         0         2         14406         1           Cranser         207         1330         1179         3         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                 |                          | VOC | СО            | NOx           | SOx     | PM10 | CO2    | CH4      |      |
| Bore-Dril Rigs         0         0         0         0         0         0         0         0           Cennent Mixers         0         0         0         0         0         0         0         0           Cranses         8         42         47         0         2         14406         1           Crawler Tractors/Dozers         207         1330         1179         3         60         299294         19           Crushing/Processing Eq.         0         0         0         0         0         0         0         0           Generators         0         0         0         0         0         0         0         0         0           Generators Sts         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>Aerial Lifts</td> <td>6</td> <td>55</td> <td>46</td> <td>0</td> <td>2</td> <td>11666</td> <td>1</td> <td></td>             | Aerial Lifts             | 6   | 55            | 46            | 0       | 2    | 11666  | 1        |      |
| Bore-Dril Rigs         0         0         0         0         0         0         0         0           Cennent Mixers         0         0         0         0         0         0         0         0           Cranses         8         42         47         0         2         14406         1           Crawler Tractors/Dozers         207         1330         1179         3         60         299294         19           Crushing/Processing Eq.         0         0         0         0         0         0         0         0           Generators         0         0         0         0         0         0         0         0         0           Generators Sts         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>Air Compressors</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>                | Air Compressors          | 0   | 0             | 0             | 0       | 0    | 0      | 0        |      |
| Concret/Industrial Saws         0         0         0         0         0         0         0           Cranes         8         42         47         0         2         14406         1           Crawler Tractors/Dozers         207         1330         1179         3         60         299244         19           CrushingProcessing Eq.         0         0         0         0         0         24256         5           Excavators         0         0         0         0         0         0         0         0           Forklits         136         1227         495         3         14         31320         12           Generator Sets         0         0         0         0         0         0         0         0           Grift lighway Tractors         154         1264         5971         5288         30         157         288303         114           Other General Industrial Eq.         0         0         0         0         0         0         0           Other General Industrial Eq.         0         0         0         0         0         0         0         0         0         0 <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> |                          | 0   | 0             | 0             | 0       | 0    | 0      | 0        |      |
| Cranes8424702144061Crawler Tractors/Dozers207133011793602992419Crawler Tractors/Dozers0000000Dumper/Tenders52177327112429635Excavators00000000Forklifts13612374953143132012Generator Sets00000000Off-Highway Tractors0000000Off-Highway Tractor0000000Off-Highway Tractor0000000Off-Highway Tractor0000000Off-Highway Tractor0000000Other General Industrial Eq.000000Pavers532260152990Pavers00000000Pavers00000000Pavers00000000Pavers00000000Pavers00000000 <td>Cement Mixers</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cement Mixers            | 0   | 0             | 0             | 0       | 0    | 0      | 0        |      |
| Crawler Tractors/Dozers         207         1330         1179         3         60         29924         19           Crushing/Processing Eq.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                       | Concrete/Industrial Saws | 0   | 0             | 0             | 0       | 0    | 0      | 0        |      |
| Crushing/Processing Eq.         0         0         0         0         0         0         0           Dumpers/Tenders         52         177         327         1         12         42963         5           Excavators         0         0         0         0         0         0         0         0         0           Forklifts         136         1237         495         3         14         31320         12           Generator Sets         0         0         0         0         0         0         0         0           Off: Highway Tractors         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                  | Cranes                   | 8   | 42            | 47            | 0       | 2    | 14406  | 1        |      |
| Dumpers/Tenders         52         177         327         1         12         42963         5           Excavators         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                      | Crawler Tractors/Dozers  | 207 | 1330          | 1179          | 3       | 60   | 299294 | 19       |      |
| Dumpers/Tenders         52         177         327         1         12         42963         5           Excavators         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                      | Crushing/Processing Eq.  | 0   | 0             | 0             | 0       | 0    | 0      | 0        |      |
| Excavance         0         0         0         0         0         0         0           Forklifts         136         1237         495         3         14         31320         12           Generator Sets         0         0         0         0         0         0         0         0         0           Off-Highway Tractors         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td>52</td> <td>177</td> <td>327</td> <td>1</td> <td>12</td> <td>42963</td> <td>5</td> <td></td>                         |                          | 52  | 177           | 327           | 1       | 12   | 42963  | 5        |      |
| Forklifts       136       1237       495       3       14       31320       12         Generator Sets       0       0       0       0       0       0       0       0       0         Off-Highway Tractors       0       0       0       0       0       0       0       0       0         Off-Highway Tractors       0       0       0       0       0       0       0       0       0       0         Off-Highway Tractors       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                            | -                        | 0   | 0             | 0             | 0       |      |        | 0        |      |
| Generator Sets         0         0         0         0         0         0         0         0           Graders         154         1296         754         3         33         301991         14           Off-Highway Tractors         0         0         0         0         0         0         0         0         0           Off-Highway Tractors         1264         5971         5288         30         157         2883603         114           Other General Industrial Eq.         0         0         0         0         0         0         0         0           Pavers         5         32         26         0         1         5299         0           Pavers         5         32         26         0         1         5299         0           Pavers         0         0         0         0         0         0         0         0         0           Pavers         0         0         0         0         0         0         0         0           Pavers         0         0         0         0         0         0         0         0         0                                                                                                                                                    |                          | 136 | 1237          |               |         | 14   | 313320 |          |      |
| Graders       154       1296       754       3       33       301991       14         Off-Highway Tractors       0       0       0       0       0       0       0       0       0         Off-Highway Tractors       0       0       0       0       0       0       0       0       0       0         Off-Highway Tractors       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                            |                          |     |               |               |         |      |        |          |      |
| Off-Highway Tractors         0         0         0         0         0         0         0           Off-Highway Tractors         1264         5971         5288         30         157         2883603         114           Other Diesel Construction Eq.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>301991</td><td></td><td></td></td<>              |                          |     |               |               |         |      | 301991 |          |      |
| Off-Highway Trucks         1264         5971         5288         30         157         2883603         114           Other Diesel Construction Eq.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                |                          |     |               |               |         |      |        |          |      |
| Other Diesel Construction Eq.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                   |                          |     |               |               |         |      |        |          |      |
| Other General Industrial Eq.00000000Other Material Handling Eq.00000000Pavers532260152990Paving Eq. Other00000000Plate Compactors00000000Pumps00000000Roller Compactors7664402117301Rough Terrain Forklifts0000000Rubber Tires Loaders0000000Strapers00000000Strapers00000000Strapers00000000Strapers00000000Strators Eq.00000000Strators697383822121374676Front End Loaders131367102233391Backhoes13136710223331Trenchers38023041963412133113334Welders0000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |     |               |               |         |      |        |          |      |
| Other Material Handling Eq.0000000Pavers532260152990Paving Eq. Other0000000Plate Compactors0000000Pressure Washers00000000Pumps00000000Rough Terrain Forklifts0000000Rubber Tired Dozers0000000Rubber Tires Loaders0000000Signal Boards0000000Signal Boards0000000Sweepers/Scrubbers0000000Sweepers/Scrubbers121266502233791Backhoes131367102253831Trenchers3802304196341213113334Welders00000000Gasoline Const Eq.000000000Lis per const. period126.85.40.0240.210.21221.270.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                        |     |               |               |         |      |        |          |      |
| Pavers532260152990Paving Eq. Other00000000Plate Compactors0000000Pressure Washers0000000Pumps0000000Rough Terrain Forklifts000000Rubber Tired Dozers000000Rubber Tires Loaders000000Signal Boards0000000Skid Steer Loaders1516610702239471Surfacing Eq.00000000Swepers/Scrubbers0000000Tractors697383822121374676Front End Loaders121266502233791Backhoes131367102253831Tractors38023041963412133113334Welders00000000Gasoline Const Eq.00000000Lis per const. period1.26.85.40.0240.210.212212.790.10 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                        |     |               |               |         |      |        |          |      |
| Paving Eq. Other0000000Plate Compactors00000000Pressure Washers00000000Pumps00000000Roller Compactors7664402117301Rough Terrain Forklifts0000000Rubber Tired Dozers0000000Rubber Tires Loaders0000000Strapers00000000Signal Boards00000000Sweepers/Scrubbers00000000Sweepers/Scrubbers131367102233791Backhoes131367102233831Trenchers00000000Gasoline Const Eq.00000000Ibs per const. period2327136761079548423419.524425882210tons per const. period1.26.85.40.0240.210.212212.790.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                        | •   |               |               |         | 1    | 0      |          |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | -   |               |               |         | 0    |        |          |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |     |               |               |         |      |        |          |      |
| Pumps         0         0         0         0         0         0         0           Roller Compactors         7         66         44         0         2         11730         1           Rough Terrain Forklifts         0         0         0         0         0         0         0         0           Rubber Tired Dozers         0         0         0         0         0         0         0         0           Rubber Tires Loaders         0         0         0         0         0         0         0         0           Scrapers         0         0         0         0         0         0         0         0         0           Signal Boards         0         0         0         0         0         0         0         0         0           Surfacing Eq.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                           | -                        |     |               |               |         |      |        |          |      |
| Roller Compactors       7       66       44       0       2       11730       1         Rough Terrain Forklifts       0       0       0       0       0       0       0       0         Rubber Tired Dozers       0       0       0       0       0       0       0       0         Rubber Tired Dozers       0       0       0       0       0       0       0       0         Rubber Tired Dozers       0       0       0       0       0       0       0       0       0         Rubber Tired Dozers       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0<                                                                                                                                                                                                                                |                          | •   |               |               |         |      |        |          |      |
| Rough Terrain Forklifts         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                               | -                        |     |               |               |         |      | 0      | 0        |      |
| Rubber Tired Dozers         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                   |                          |     |               |               |         |      |        | 1        |      |
| Rubber Tires Loaders00000000Scrapers000000000Signal Boards000000000Skid Steer Loaders1516610702239471Surfacing Eq.00000000Sweepers/Scrubbers0000000Tractors697383822121374676Front End Loaders121266502233791Backhoes131367102253831Trenchers38023041963412133113334Welders00000000Gasoline Const Eq.VOCCONOxSOxPM10PM2.5CO2CH4Ibs per const. period2327136761079548423419.524425582210tons per const. period1.26.85.40.0240.210.212212.790.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |     |               |               |         |      |        |          |      |
| Scrapers0000000Signal Boards00000000Skid Steer Loaders1516610702239471Surfacing Eq.0000000Sweepers/Scrubbers0000000Tractors697383822121374676Front End Loaders121266502233791Backhoes131367102253831Trenchers38023041963412133113334Welders00000000Gasoline Const Eq.00000000Ibs per const. period2327136761079548423419.524425582210tons per const. period1.26.85.40.0240.210.212212.790.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |     |               |               |         |      |        |          |      |
| Signal Boards0000000Skid Steer Loaders1516610702239471Surfacing Eq.0000000Sweepers/Scrubbers0000000Tractors697383822121374676Front End Loaders121266502233791Backhoes131367102253831Trenchers38023041963412133113334Welders00000000Gasoline Const Eq.00000000Ibs per const. period2327136761079548423419.52442582210tons per const. period1.26.85.40.0240.210.212212.790.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | _   |               |               |         |      |        |          |      |
| Skid Steer Loaders       15       166       107       0       2       23947       1         Surfacing Eq.       0       0       0       0       0       0       0       0         Sweepers/Scrubbers       0       0       0       0       0       0       0       0         Tractors       69       738       382       2       12       137467       6         Front End Loaders       12       126       65       0       2       25383       1         Backhoes       13       136       71       0       2       25383       1         Trenchers       380       2304       1963       4       121       331133       34         Welders       0       0       0       0       0       0       0       0         Gasoline Const Eq.       0       0       0       0       0       0       0       2       2582       210         Ibs per const. period       2327       13676       10795       48       423       419.52       4425582       210         tons per const. period       1.2       6.8       5.4       0.024       0.21 <td< td=""><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></td<>                                                                                                 |                          | 0   |               |               |         |      |        | -        |      |
| Surfacing Eq.       0       0       0       0       0       0       0       0         Sweepers/Scrubbers       0       0       0       0       0       0       0       0       0         Tractors       69       738       382       2       12       137467       6         Front End Loaders       12       126       65       0       2       23379       1         Backhoes       13       136       71       0       2       25383       1         Trenchers       380       2304       1963       4       121       331133       34         Welders       0       0       0       0       0       0       0         Gasoline Const Eq.       0       0       0       0       0       0       0       0         Ibs per const. period       2327       13676       10795       48       423       419.52       4425582       210         tons per const. period       1.2       6.8       5.4       0.024       0.21       0.21       2212.79       0.10                                                                                                                                                                                                                                                                                   | -                        | 0   |               |               | ÷       |      | -      | 0        |      |
| Sweepers/Scrubbers       0       0       0       0       0       0       0       0         Tractors       69       738       382       2       12       137467       6         Front End Loaders       12       126       65       0       2       23379       1         Backhoes       13       136       71       0       2       25383       1         Trenchers       380       2304       1963       4       121       331133       34         Welders       0       0       0       0       0       0       0       0         Gasoline Const Eq.       0       0       0       0       0       0       0       0         Ibs per const. period       2327       13676       10795       48       423       419.52       4425582       210         tons per const. period       1.2       6.8       5.4       0.024       0.21       0.21       2212.79       0.10                                                                                                                                                                                                                                                                                                                                                                         |                          |     |               |               |         |      |        | l        |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |     |               |               |         |      |        |          |      |
| Front End Loaders121266502233791Backhoes131367102253831Trenchers38023041963412133113334Welders0000000Gasoline Const Eq.0000000TotalsVOCCONOxSOxPM10PM2.5CO2CH4Ibs per const. period2327136761079548423419.524425582210tons per const. period1.26.85.40.0240.210.212212.790.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |     |               |               |         |      |        |          |      |
| Backhoes       13       136       71       0       2       25383       1         Trenchers       380       2304       1963       4       121       331133       34         Welders       0       0       0       0       0       0       0       0         Gasoline Const Eq.       0       0       0       0       0       0       0       0         Totals       VOC       CO       NOx       SOx       PM10       PM2.5       CO2       CH4         Ibs per const. period       2327       13676       10795       48       423       419.52       4425582       210         tons per const. period       1.2       6.8       5.4       0.024       0.21       0.21       2212.79       0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |     |               |               |         |      |        | 6        |      |
| Trenchers       380       2304       1963       4       121       331133       34         Welders       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                       |                          |     |               |               |         |      |        | 1        |      |
| Welders       0       0       0       0       0       0       0       0       0         Gasoline Const Eq.       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                      |                          |     |               |               |         |      |        |          |      |
| Gasoline Const Eq.       0       0       0       0       0       0       0       0         Totals       VOC       CO       NOx       SOx       PM10       PM2.5       CO2       CH4         Ibs per const. period       2327       13676       10795       48       423       419.52       4425582       210         tons per const. period       1.2       6.8       5.4       0.024       0.21       0.21       2212.79       0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |     |               |               |         |      | 331133 |          |      |
| TotalsVOCCONOxSOxPM10PM2.5CO2CH4lbs per const. period2327136761079548423419.524425582210tons per const. period1.26.85.40.0240.210.212212.790.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |     |               |               |         |      |        |          |      |
| Ibs per const. period2327136761079548423419.524425582210tons per const. period1.26.85.40.0240.210.212212.790.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gasoline Const Eq.       | 0   | 0             | 0             | 0       | 0    | 0      | 0        |      |
| tons per const. period 1.2 6.8 5.4 0.024 0.21 0.21 2212.79 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |     |               |               |         |      |        |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |     |               |               |         |      |        |          |      |
| Average lbs/day = 5.9 $34.6$ 27.3 0.121 1.07 1.06 11204.00 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1                      |     | 6.8           | 5.4           | 0.024   |      | 0.21   | 2212.79  | 0.10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Average lbs/day =        | 5.9 | 34.6          | 27.3          | 0.121   | 1.07 | 1.06   | 11204.00 | 0.53 |
| Normalized TPY = $0.9$ 5.3 4.2 0.0 0.2 0.2 1713.1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Normalized TPY =         | 0.9 | 5.3           | 4.2           | 0.0     | 0.2  | 0.2    | 1713.1   | 0.1  |

 CO2e, tons/period
 2226.6

 CO2e, tons/yr:
 1723.8

N2O 75 0.04 0.19 0.029

CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

Other Assumptions and References:

1. Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08.

Optimum trench construction progress rate is 80m (260ft) per day.

Non-optimum trench construction progress rate is 30m (100 ft) per day.

An average progress of 180 ft/day is used where applicable.

2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness.

A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable.

The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr.

- Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001.
- 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.
- 4. Construction schedule note: applicant data indicates a construction work day period of 8 hours
  - The equipment use rates provided by the applicant are consistent with an 8 hour workday.
- 5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.

| CONSTRUCTIO         | ON PHASE       | - SGF 4              |                    |                 |                     |                  |                  |        |
|---------------------|----------------|----------------------|--------------------|-----------------|---------------------|------------------|------------------|--------|
| MRI Level 2 Ana     | alysis(Refs    | 1, 3-7)              |                    |                 | Acres               | 2117             |                  |        |
| A cres Subject to ( |                |                      |                    |                 |                     | 211.7            |                  |        |
| Max A cres Subje    |                |                      |                    | day of this pl  | hase:               | 15.9             | note (10)        |        |
| Emissions Factor    | for PM10 U     | ncontrolled, tons/   | acre/month:        |                 |                     | 0.12             |                  |        |
| PM2.5 fraction of   | PM10 (per      | CARB CEIDARS         | SProfiles):        |                 |                     | 0.21             |                  |        |
| Activity Levels:    |                | Hrs/Day:             |                    |                 |                     | 8                |                  |        |
|                     |                | Days/Wk:             |                    |                 |                     | 5                |                  |        |
|                     |                | Days/Month:          |                    | 22              |                     |                  |                  |        |
|                     | Phase Cons     | t Period, Months:    |                    | 16              | 1.33                | years            |                  |        |
|                     | Phase Co       | nst Period, Days:    |                    |                 |                     | 395              |                  |        |
| Wet Season Adju     | ustment:       | (Per AP-42, Se       | ction 13.2.2, Figu | ure 13.2.2-1, 1 | 2/03 or CalEEM      | od, Appendix D   | Table 1.1.)      |        |
| Ν                   | 1ean # days/   | yearwithrain>=       | 0.01 inch:         |                 |                     | 40               |                  |        |
| N                   | 1ean # montl   | hs/yr with rain >=   | 0.01 inch:         |                 |                     | 1.33             |                  |        |
| A                   | djusted Con    | st Period, Months    |                    |                 |                     | 14.22            |                  |        |
| A                   | djusted Con    | st Period, Days:     |                    |                 |                     | 342              |                  |        |
|                     | -              | -                    |                    |                 |                     |                  |                  |        |
| Controlsfor Fug     | gitive Dust:   |                      | Pro                | oposed wateri   | ng cycle:           | 3                | times per day    |        |
| _                   |                |                      |                    |                 |                     |                  |                  |        |
| 3 watering cycles/  | /8 hour cons   | truction shift yield | ls a 68% reductio  | on, use 68% fo  | or non-desert sites | . (11)(12)       |                  |        |
| Speed control of c  | onsite const t | traffic to <15 mph   | yields a 40-70%    | reduction (us   | e 50% control as    | conservative for | site). (11)(12)  |        |
| -                   |                | Calculated %         | control based on   | mitigationspr   | oposed:             | 84               | % control        |        |
|                     |                | Conservative co      | ontrol % used for  | emissions est   | imates:             | 84               | % control        |        |
|                     |                |                      |                    |                 |                     | 0.16             | release fraction |        |
| Emissions: Cont     | rolled         | PM10                 | PM2.5              |                 |                     |                  |                  |        |
| to                  | ons/month      | 0.305                | 0.064              |                 |                     |                  |                  |        |
| to                  | ons/period     | 4.336                | 0.910              |                 |                     |                  |                  |        |
| Max Ib              | os/day         | 27.713               | 5.820              |                 |                     |                  |                  |        |
|                     | -              |                      |                    |                 |                     |                  |                  |        |
| Soil Handling Er    | missions(Cu    | ut and Fill): (2)    |                    |                 |                     |                  |                  |        |
| Total cu.yds of so  | il handled:    |                      | 0                  |                 | Mean annual w       | rind speed, mpha | : (8)            | 8.03   |
| Total tons of soil  | handled:       |                      | 0.0                |                 | Avg. Soil mois      | ture, %: (9)     |                  | 5      |
| Total days soil ha  | ndled:         |                      | 342                |                 | Avg. Soil densi     | ty, tons/cu.yd:  |                  | 1.3    |
| Tons soil/day:      |                |                      | 0                  |                 | k factor for PM     | 10:              |                  | 0.35   |
| Control Eff, wate   | ring, %        |                      | 80                 |                 | Number of Dro       | ps per ton:      |                  | 4      |
|                     | Rele           | ase Fraction:        | 0.2                |                 | Calc 1              | wind             |                  | 1.851  |
|                     |                |                      |                    |                 | Calc 2              | moisture         |                  | 3.607  |
| Emissions:          | PM10           | PM2.5                |                    |                 | Calc 3              | int              |                  | 0.513  |
| tons/period         | 0.000          | 0.000                |                    |                 | Calc 4              | PM10             | lb/ton           | 0.0006 |
| tons/month          | 0.000          | 0.000                |                    |                 | PM2.5 fraction      | of PM10:         |                  | 0.210  |
| max Ibs/day         | 0.000          | 0.000                |                    |                 |                     |                  |                  |        |
| -                   |                |                      |                    |                 |                     |                  |                  |        |
|                     |                | Emissions Tota       | als                | PM 10           | PM 2.5              |                  |                  |        |
|                     |                |                      | tons/period        | 4.336           | 0.910               |                  |                  |        |
|                     |                |                      |                    |                 |                     |                  |                  |        |

### Methodology References:

(1) MRI Report, South Coast AQMD Project No. 95040, March 1996, Level 2 Analysis Procedure.

MRI Report uncontrolled factor of 0.11 tons/acre/month is based on 168 hours per month of const activity.

For an activity rate of ~180 hrs/month, the adjusted EF would be 0.12 tons/acre/month (uncontrolled).

(2) Soil Handling (Cut and Fill), EPA, AP-42, Section 13.2.4., 11/06.

(3) URBEMIS, Version 9.2.4, User's Manual Appendix A, page A-6.

(4) CARB Area Source Methodology, Section 7.7, 9/02.

(5) WRAP Fugitive Dust Handbook, 9/06.

(6) USEPA, AP-42, Section 13.2.3, 2/10.

(7) Estimating PM Emissions from Construction Operations, USEPA, MRI, 9/99.

(8) Wind speed data for Lemoore met station. Annual avg wind speed = 8.03 mph, % calms = 3.44%.

(9) Soil Moisture; 5% assumed avg value

(10) adjusted applicant value based on 7.5% of total acreage disturbed on any given day

(11) SCAQMD CEQA Handbook 1993.

(12) SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres, Fugitive Dust Mitigations, February 2005.

# OFFSITE PAVED ROAD FUGITIVE DUST EMISSIONS

(associated with delivery truck and worker vehicle traffic on I-5 and plant access road)

| Average mileage for construction related vehicles:<br>Avg weight of vehicular equipment on road: |                     |                           | NA                         | miles, roundtrip distance*** |               |                                                                                 |
|--------------------------------------------------------------------------------------------------|---------------------|---------------------------|----------------------------|------------------------------|---------------|---------------------------------------------------------------------------------|
| Avg weight of veh                                                                                | iculareq            | luipment oi               | n road:                    |                              | 4.1           | tons (range 2 - 42 tons)                                                        |
| Road surface silt lo                                                                             | oadingfa            | actor:                    |                            |                              | 0.015         | g/m2 (range 0.03 - 400 g/m2)<br>Limited Access Freeway >10,000 ADT <b>(I-5)</b> |
| Particle size multip                                                                             | plier fact          | ors:                      |                            | PM10                         | 0.0022        | Ib/VMT                                                                          |
| ·                                                                                                |                     |                           |                            | PM2.5                        | 0.00054       | Ib/VMT                                                                          |
| C factors (brake ar                                                                              | nd tire w           | ear):                     |                            | PM10                         | 0.00047       | Ib/VMT                                                                          |
|                                                                                                  |                     | /                         |                            | PM2.5                        | 0.00036       | Ib/VMT                                                                          |
|                                                                                                  |                     |                           |                            |                              |               |                                                                                 |
| Avg vehicle speed on road:                                                                       |                     |                           |                            |                              | 65            | mph                                                                             |
|                                                                                                  |                     |                           |                            |                              |               |                                                                                 |
| Avg. Number of ve                                                                                | ehiclesp            | er day:                   |                            |                              | 195           |                                                                                 |
|                                                                                                  |                     |                           |                            |                              | 00            | calculated per Applicant da                                                     |
| Avg. Number of w                                                                                 | ork days            | •                         |                            | nor month                    | 22            | VMT/period: 11909669                                                            |
| Number of work m                                                                                 | oonthe <sup>.</sup> | 1                         | otal vehicles              | per monun.                   | 4290<br>42.67 | adjusted for precip events                                                      |
|                                                                                                  | 10111115.           | Total ve                  | hicles per cor             | nst neriod                   | 183054.3      |                                                                                 |
|                                                                                                  |                     |                           | ဂ။ပဲသမ္မာ ယ၊               | ia periou.                   | 100004.0      |                                                                                 |
|                                                                                                  |                     | PM10                      |                            |                              |               |                                                                                 |
| Calc                                                                                             | 1                   | 0.022                     |                            |                              |               |                                                                                 |
| Calc                                                                                             | 2                   | 4.217                     |                            |                              |               |                                                                                 |
| Calc                                                                                             | 3                   | 0.0007                    | lb/VMT                     |                              |               |                                                                                 |
|                                                                                                  |                     |                           |                            |                              |               |                                                                                 |
| Emis<br>Ibs/po<br>tons/j                                                                         |                     | PM 10<br>8016.37<br>4.008 | PM 2.5<br>1354.77<br>0.677 |                              |               |                                                                                 |

EPA, AP-42, Section 13.2.1, March 2006, updated 9/2008.

PM2.5 fraction of PM10 per CARB CEIDARs is 0.169

\*\*\* Note: avg roundtrip distance traveled by delivery or worker vehicles on freeways (I-5) and other State Routes in the project area.

Vehicles per day: worker + deliveries+staff support vehicles (averages)

# ONSITE UNPAVED ROAD FUGITIVE DUST

| Length of Unpaved Roads                                 | on Construct                 | ion site:                                   | 0.1                | miles*                            |                   |        |  |  |
|---------------------------------------------------------|------------------------------|---------------------------------------------|--------------------|-----------------------------------|-------------------|--------|--|--|
| Avg weight of construction                              | n vehicular eo               | quipment on road:                           | 4.1                | tons (range 2                     | - 42 tons)        |        |  |  |
| Road surface silt content:<br>Road surface material moi | sture content:               |                                             | 8.5<br>5           | % (range 1.8<br>% (range 0.03     | ,                 |        |  |  |
| Particle size multiplier fac                            | tors:                        | PM10<br>PM2.5                               | k<br>1.5<br>0.15   | a<br>0.9<br>0.9                   | b<br>0.45<br>0.45 |        |  |  |
| C factors (brake and tire w                             | ear):                        | PM10<br>PM2.5                               | 0.00047<br>0.00036 | Ib/VMT<br>Ib/VMT                  |                   |        |  |  |
| Avg construction vehicles                               | peed on road                 | 5                                           | mph (range 5       | -55 mph)                          |                   |        |  |  |
| Avg number of construction                              | on vehicles pe               | er day:                                     | 74                 | * *                               |                   |        |  |  |
| Number of construction we                               |                              | nonth:<br>vehicles per month:               | 22<br>1628         | VMT/period: 11826.84              |                   |        |  |  |
| Number of construction w                                |                              |                                             |                    | adjusted for precipitation events |                   |        |  |  |
| Number of construction we                               |                              | cles per const period                       | 14.22<br>118268.48 | • •                               | precipitation     | events |  |  |
| Control reduction due to w                              | Total vehi                   | cles per const period:<br>d control, etc. = | 118268.48<br>80    | • •                               | precipitation     | events |  |  |
|                                                         | Total vehi<br>vatering, spee |                                             | 118268.48          | • •                               | precipitation     | events |  |  |

EPA, AP-42, Section 13.2.2, March 2006

Soil Moisture; 5% avg

Soil silt content: 8.5% per AP-42 for construction site scraper routes

\*\* const equipment plus site support pickups plus

#### CONSTRUCTION PHASE - Truck Hauling/Delivery and Site Support Vehicle Emissions All Phases

|                                    | All Phases                      |            |               |                             |            |             |            |            |             |          |              |        |
|------------------------------------|---------------------------------|------------|---------------|-----------------------------|------------|-------------|------------|------------|-------------|----------|--------------|--------|
|                                    | Delivery/Hauling Vehicle Use Ra | ates       |               | Emissions Factors (Ibs/vmt) |            |             |            |            |             |          |              |        |
|                                    | Delivery Roundtrip Distance:    | 0          | miles         | NOx                         | CO         | VOC         | SOx        | PM10       | CO2         |          |              |        |
|                                    | Const Days per Period:          | 0          |               | 0.00625339                  | 0.00051535 | 0.00011377  | 0.000026   | 3.9844E-05 | 3.10646173  | HDDT     |              |        |
|                                    | Avg Deliveries per Day:         | 0          |               | 0.00046982                  | 0.00340025 | 7.8173E-05  | 0.000013   | 2.9202E-06 | 1.02361637  | MDGT     |              |        |
|                                    | Fraction of Deliveries-Diesel:  | 0.95       | HDDT          |                             |            | Daily Emiss | ions (lbs) |            |             |          |              |        |
|                                    | Fraction of Deliveries-Gas:     | 0.05       | MDGT          | NOx                         | СО         | VOC         | SOx        | PM 10      | CO2         | PM 2.5   |              |        |
|                                    | Total Delivery VMT:             | 2183909    | per Applicant | 0.000                       | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000    | HDDT         |        |
|                                    | Total Daily VMT-Diesel          | 0          |               | 0.000                       | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000    | MDGT         |        |
|                                    | Total Daily VMT-Gasoline        | 0          |               |                             | ٦          | Fonsper Con | st Period  |            |             |          |              |        |
|                                    | Total Period VMT-Diesel         | 2074713.74 | 1             | 6.487                       | 0.535      | 0.118       | 0.027      | 0.041      | 3222.5      | 0.034    | HDDT         |        |
|                                    | Total Period VMT-Gasoline       | 109195.46  |               | 0.026                       | 0.186      | 0.004       | 0.001      | 0.000      | 55.9        | 0.000    | MDGT         |        |
|                                    |                                 |            | <i>"</i> `    |                             |            |             |            |            |             |          |              |        |
|                                    | Construction Site Support Vehic |            | (LDTs)        | Daily Emissions, Ibs        |            |             |            |            |             |          |              |        |
|                                    | Gasoline Vehicle VMT Period:    | 75900      |               | NOx                         | СО         | VOC         | SOx        | PM 10      | CO2         |          |              | PM 2.5 |
|                                    | Avg Daily Gasoline VMT:         | 300        |               | 0.00040762                  | 0.00359256 | 6.9991E-05  | 0.000008   | 5.0718E-06 | 0.6541839   | lbs/vmt* | LDT gasoline |        |
|                                    | Avg Daily Diesel VMT:           | 0          |               | 0.1223                      | 1.0778     | 0.0210      | 0.0024     | 0.0015     | 196.2552    | lbs/day  | gasoline     | 0.0010 |
|                                    | Total Phase Const Days:         | 240        |               |                             |            |             |            |            |             |          |              |        |
|                                    |                                 |            |               |                             |            | Tonsper Co  | nst Period |            |             |          |              |        |
| Ref: EMFAC 2014, SJVAPCD Year 2016 |                                 |            | 0.0155        | 0.1363                      | 0.0027     | 0.0003      | 0.0002     | 24.8       | tons/period | gasoline | 0.0001       |        |
|                                    | LDT1-gas, MDV-gas, HDDT-dsl     |            |               |                             |            |             |            |            |             |          |              |        |
|                                    | See EF data in WSP Support Appe | andix      |               |                             |            |             |            |            |             |          |              |        |
|                                    |                                 |            |               |                             |            |             |            |            |             |          |              |        |

### Notes \*\*\*

VMT for delivery/hauling for all vehicles includes: (1) materials deliveries to site, (2) materials removal from site, other VMT as specified below.

Support Vehicle VMT: best estimate at time of filing, 10 LDT (gasoline) at 30 VMT/day

CARB-CEIDARS, Updated Fractions for PM Profiles: PM2.5 = 0.991 of PM10 for Diesel Exhaust, and 0.998 for Gasoline Vehicles.

# CONSTRUCTION PHASE - Worker Travel - Emissions

|                                      |                  |          |              |             |                 |                     | .,            |            |       |  |
|--------------------------------------|------------------|----------|--------------|-------------|-----------------|---------------------|---------------|------------|-------|--|
|                                      |                  |          |              |             | LDA-gas         |                     |               |            |       |  |
| Worker Travel to Site                |                  |          |              |             | See EF data ir  | NWSP Support /      | Appendix      |            |       |  |
| Avg Occupancy/Vehicle:               | 0                |          |              |             |                 |                     |               |            |       |  |
| Avg Roundtrip Distance, miles:       | 0.0              |          |              |             | ns Factors (Ibs | ,                   |               |            |       |  |
| Avg#ofWorkerVehicles, perday:        | 0                |          | NOx          | CO          | VOC             | SOx                 | PM10          | CO2        |       |  |
| A∨g Daily Worker VMT:                | 0                |          | 0.00013058   | 0.001103197 | 2.504E-05       | 0.000007            | 0.000004      | 0.65463696 |       |  |
| Max # of Worker Vehicles, per day:   | 0                |          |              |             |                 |                     |               |            |       |  |
| Max Daily Worker VMT:                | 0                |          |              | Da          | aily Emissions  | s(lbs)              |               |            |       |  |
| Total Const Days:                    | 240              |          | NOx          | CO          | VOC             | SOx                 | PM10          | CO2        | PM2.5 |  |
| Total Const Period Worker VMT:       | 9725760          | Avg      | 0.00         | 0.00        | 0.00            | 0.00                | 0.00          | 0.00       | 0.00  |  |
| VMT data suppli                      | ed by Applicant. |          |              |             |                 |                     |               |            |       |  |
|                                      |                  |          |              | То          | nsperConstl     | Period              |               |            |       |  |
|                                      |                  | Avg      | 0.635        | 5.365       | 0.122           | 0.034               | 0.019         | 3183.4     | 0.000 |  |
| Worker Travel by Busing from Staging | Area             |          |              |             |                 |                     |               |            |       |  |
| Total Bus VMT/Const Period:          | 0                | Bus Roun | d Trips/Day: | 0           |                 |                     |               |            |       |  |
| Avg Bus VMT/Const Day:               | 0                | Bus Occu | pancy/Trip:  | 0           |                 | All other buses-DSL |               |            |       |  |
| Max Bus VMT/Const Day:               | 0                |          |              |             |                 | See EF data in V    | WSP Support A | ppendix    |       |  |
|                                      |                  |          |              | Emissio     | ns Factors (Ibs | /VMT)               |               |            |       |  |
| # buses supplied by Applicant.       |                  |          | NOx          | CO          | VOC             | SOx                 | PM10          | CO2        |       |  |
|                                      |                  |          | 0.012001     | 0.001203    | 0.000458        | 0.000026            | 0.00015       | 2.734838   |       |  |
|                                      |                  |          |              | Da          | ily Emissions   | s (lbs)             |               |            |       |  |
|                                      |                  |          | NOx          | СО          | VOC             | SOx                 | PM 10         | CO2        | PM 2. |  |
|                                      |                  | Avg      | 0.00         | 0.00        | 0.00            | 0.00                | 0.00          | 0.00       | 0.00  |  |
|                                      |                  | Max      | 0.00         | 0.00        | 0.00            | 0.00                | 0.00          | 0.00       | 0.00  |  |
|                                      |                  |          |              |             | Tonsper Cor     | nst Period          |               |            |       |  |
|                                      |                  | Avg      | 0.000        | 0.000       | 0.000           | 0.000               | 0.000         | 0.000      | 0.000 |  |

Ref: SJVAPCD EMFAC 2014, Year 2020

### **CONSTRUCTION PHASE - Trackout Emissions**

| Paved Road Length (miles):       | 0.1          | estimated rou   | undtrip trackout distance |                 |             |
|----------------------------------|--------------|-----------------|---------------------------|-----------------|-------------|
| Daily # of Vehicles:             | 74           |                 |                           |                 |             |
| Avg Vehicle Weight (tons):       | 6.8          |                 | PM 10                     | PM 2.5*         |             |
| Total Unadjusted VMT/day         | 7.4          |                 | 0.361                     |                 |             |
| Particle Size Multipliers        | PM10         |                 | 1.924                     |                 |             |
| Ib/VMT                           | 0.023        |                 | 0.002                     | 0.0004          | Ib/VMT      |
| C factor, Ib/VMT                 | 0.00047      |                 | 0.129                     | 0.0217          | lbs/day     |
| Road Sfc Silt Loading (g/m^2):   | 0.56         | local X 2       | 0.001                     | 0.0002          | tons/month  |
| # of Active Trackout Points:     | 1            | * *             | 0.02                      | 0.0034          | tons/period |
| Added Trackout Miles:            | PM10         |                 |                           |                 | -           |
| Trackout VMT/day:                | 44           |                 | Default Silt Load Val     | ues for Paved I | Road Types  |
| Final Adjusted VMT/day           | 52           |                 | Freeway                   | 0.02 g/m2       |             |
| Final Adjusted VMT/month         | 1140         |                 | Arterial                  | 0.036 g/m2      |             |
| Final Adjusted VMT/period        | 16205        |                 | Collector                 | 0.036 g/m2      |             |
| Construction days/month:         | 22           |                 | Local                     | 0.28 g/m2       |             |
| Adj. Construction months/period: | 14.22        |                 | Rural                     | 1.6 g/m2        |             |
| Control Applied to Trackout:     | Gravel entra | nce, metal clea | aning grates, water washi | ng, sweeping    |             |
| Control Efficiency, %            | 84           | 0.84            | Release Factor =          | 0.16            |             |

\* PM2.5 fraction of PM10 assumed to be 0.169 (CARB CEIDARS updated fraction values) for paved roads.

\*\* 1 controlled ingress/egress point is planned for site construction

EPA, AP-42, Section 13.2.1, Proposed revisions dated 9/2008.

Use silt loading factor from default values for road type if no site specific data is available.

Trackout effects approximately 0.05 mi. of roadway arriving and departing from the site access point.

Plant access road is already paved. Entrance will be gravelled with metal grates for take out control.

Vehicle count = delivery trucks plus site support trucks (see Unpaved Onsite tab)

Worker vehicles not counted for trackout, they will park on the site perimeter.

SGF 5

2023

|                    | Tons/Per | iod  |      |      |       |         |       |        |
|--------------------|----------|------|------|------|-------|---------|-------|--------|
|                    |          |      |      |      |       | F       | -ug   | Fug    |
|                    | NOx      | CO   | VOC  | SOx  | PM 10 | CO2     | PM 10 | PM 2.5 |
| on-off site travel | 5.86     | 5.10 | 0.20 | 0.05 | 0.05  | 4813    | 6.72  | 1.14   |
| on-site equipment  | 5.16     | 4.10 | 0.88 | 0.01 | 0.21  | 1406    |       |        |
| Total              | 11.02    | 9.20 | 1.08 | 0.07 | 0.26  | 6219    | 6.72  | 1.14   |
| Months:            | 10       |      |      |      |       |         |       |        |
| Max Year Months:   | 10       |      |      |      |       |         |       |        |
| Total per Year:    | 11.02    | 9.20 | 1.08 | 0.07 | 0.26  | 6218.92 | 6.72  | 1.14   |

# CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

# WSP Main Site Construction-SGF 5

### Assumptions:

Project:

1. The average engines employed in construction equipment use consumes fuel at a rate of:

Ref: EPA, NR-009b Publication, November 2002.

Ref: Sacramento County APCD Const. Program Data, V. 6.0.3, 3/2007.

Ref: EPA, NR-009c Publication, EPA 420-P-04-009, April 2004.

Ref: Niland Energy Project, IID, AFC Vol 2, App A.

Ref: South Coast AQMD PR XXI, Draft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03. The above noted references present fuel consumption values which range from 0.050 to 0.064 gal/hp-hr for diesel engines used in construction related equipment. The value of 0.060 gal/hp-hr was chosen as a reasonable upper mid-range value for construction diesel emissions calculations. For gasoline the mid-range value from SCAQMD of 0.11 gal/hp-hr was used.

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:                                                                                 | 10<br>8<br>0.83 | months<br>hrs/day<br>years | Construction Totals: | 212<br>2120<br>265 | hrs/month<br>hrs/const period<br>days/const period                                                         |
|-----------------------------------------------------------------------------------------------------------|-----------------|----------------------------|----------------------|--------------------|------------------------------------------------------------------------------------------------------------|
| <ol> <li>5. Anticipated Construction Start Year:</li> <li>6. Maximum anticipated equipment use</li> </ol> |                 | 2021<br>n/a                | 7.                   | CARB, Ma           | esel, lb/gal: 0.000183<br>soline, lb/gal: 0.000164<br>ndatory GHG Reporting Regulation<br>opendix A, 2007. |

Equipment types and use rates supplied by the Applicant.

|                               | Weighted<br>Average | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site | Total   | Total Hrs<br>per Const | Total<br>HP-Hrs |
|-------------------------------|---------------------|------------------------|-----------------|----------------------|---------|------------------------|-----------------|
| Equipment Category**          | HP                  | Project                | Hrs/day         | (each)               | Hrs/Day | Period                 | Period          |
| Aerial Lifts                  | 63                  | 1                      | 6               | 38                   | 6       | 228                    | 14364           |
| Air Compressors               | 78                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Bore-Drill Rigs               | 206                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cement Mixers                 | 9                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Concrete/Industrial Saws      | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cranes                        | 226                 | 1                      | 2               | 38                   | 2       | 76                     | 17176           |
| Crawler Tractors/Dozers       | 208                 | 3                      | 7               | 85                   | 21      | 1785                   | 371280          |
| Crushing/Processing Eq.       | 85                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Dumpers/Tenders/Water Trucks  | 16                  | 7                      | 7               | 78                   | 49      | 3822                   | 61152           |
| Excavators                    | 163                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Forklifts                     | 89                  | 8                      | 6               | 80                   | 48      | 3840                   | 341760          |
| Generator Sets                | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Graders                       | 175                 | 5                      | 7               | 43                   | 35      | 1505                   | 263375          |
| Off-Highway Tractors          | 123                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Off-Highway Trucks            | 400                 | 12                     | 7               | 88                   | 84      | 7392                   | 2956800         |
| Other Diesel Construction Eq. | 172                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other General Industrial Eq.  | 88                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other Material Handling Eq.   | 167                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pavers                        | 126                 | 1                      | 4               | 11                   | 4       | 44                     | 5544            |
| Paving Eq. Other              | 131                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Plate Compactors              | 8                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pressure Washers              | 13                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pumps                         | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Roller Compactors             | 81                  | 1                      | 7               | 17                   | 7       | 119                    | 9639            |
| Rough Terrain Forklifts       | 100                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tired Dozers           | 255                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tires Loaders          | 200                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Scrapers                      | 362                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Signal Boards                 | 6                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Skid Steer Loaders            | 65                  | 1                      | 7               | 75                   | 7       | 525                    | 34125           |
| Surfacing Eq.                 | 254                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Sweepers/Scrubbers            | 64                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Tractors                      | 98                  | 2                      | 7               | 98                   | 14      | 1372                   | 134456          |
| Front End Loaders (Single     | 98                  | 1                      | 7               | 33                   | 7       | 231                    | 22638           |
| Backhoes category)            | 98                  | 1                      | 4               | 63                   | 4       | 252                    | 24696           |
| Trenchers                     | 81                  | 3                      | 4               | 86                   | 12      | 1032                   | 83592           |
| Welders                       | 46                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Gasoline Const Eq.            | 175                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |

\*\* diesel equipment unless otherwise specified.

| Const Period Diesel Hp-Hrs =     | 4340597 |      |
|----------------------------------|---------|------|
| Const Period Gasoline Hp-Hrs =   | 0       |      |
| Const Period Diesel Fuel Use =   | 260436  | gals |
| Const Period Gasoline Fuel Use = | 0       | gals |

gal/hp-hr

gal/hp-hr

0.06

0.11

diesel

gasoline

Offroad equipment emissions factors derived SCAQMD Off Road database for 2020.

The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              |           |        | 2020 Equip | oment Emissi | ons Factors |          |         |
|----------------------------------------------|-----------|--------|------------|--------------|-------------|----------|---------|
| Equip.                                       | lbs/hr    | lbs/hr | lbs/hr     | lbs/hr       | lbs/hr      | lbs/hr   | lbs/hr  |
| Туре                                         | VOC (ROG) | CO     | NOx        | SOx          | PM10        | CO2      | CH4     |
| Aerial Lifts                                 | 0.0261    | 0.1696 | 0.1866     | 0.0004       | 0.0092      | 34.7217  | 0.0024  |
| Air Compressors                              | 0.0483    | 0.3077 | 0.3255     | 0.0007       | 0.0185      | 63.6073  | 0.0044  |
| Bore-Drill Rigs                              | 0.0480    | 0.5008 | 0.3439     | 0.0017       | 0.0062      | 164.8622 | 0.0043  |
| Cement Mixers                                | 0.0086    | 0.0415 | 0.0536     | 0.0001       | 0.0021      | 7.2481   | 0.0008  |
| Concrete/Industrial Saws                     | 0.0484    | 0.3783 | 0.3410     | 0.0007       | 0.0196      | 58.4636  | 0.0044  |
| Cranes                                       | 0.0898    | 0.3917 | 0.6610     | 0.0014       | 0.0256      | 128.6305 | 0.0081  |
| Crawler Tractors/Dozers                      | 0.1049    | 0.5260 | 0.6772     | 0.0013       | 0.0378      | 114.0177 | 0.0095  |
| Crushing/Processing Eq.                      | 0.0934    | 0.6247 | 0.5983     | 0.0015       | 0.0310      | 132.3083 | 0.0084  |
| Dumpers/Tenders                              | 0.0092    | 0.0314 | 0.0582     | 0.0001       | 0.0022      | 7.6244   | 0.0008  |
| Excavators                                   | 0.0733    | 0.5124 | 0.4042     | 0.0013       | 0.0184      | 119.5795 | 0.0066  |
| Forklifts                                    | 0.0320    | 0.2160 | 0.1691     | 0.0006       | 0.0070      | 54.3958  | 0.0029  |
| Generator Sets                               | 0.0395    | 0.2732 | 0.3232     | 0.0007       | 0.0150      | 60.9927  | 0.0036  |
| Graders                                      | 0.0919    | 0.5765 | 0.5823     | 0.0015       | 0.0280      | 132.7430 | 0.0083  |
| Off-Highway Tractors                         | 0.1470    | 0.6517 | 1.0657     | 0.0017       | 0.0497      | 151.4031 | 0.0133  |
| Off-Highway Trucks                           | 0.1443    | 0.5514 | 0.8306     | 0.0027       | 0.0280      | 260.0871 | 0.0130  |
| Other Diesel Construction Eq.                | 0.0563    | 0.3508 | 0.3519     | 0.0013       | 0.0139      | 122.4967 | 0.0051  |
| Other General Industrial Eq.                 | 0.0983    | 0.4517 | 0.6661     | 0.0016       | 0.0262      | 152.2399 | 0.0089  |
| Other Material Handling Eq.                  | 0.0924    | 0.4429 | 0.6500     | 0.0015       | 0.0252      | 141.1941 | 0.0083  |
| Pavers                                       | 0.0989    | 0.4920 | 0.5450     | 0.0009       | 0.0355      | 77.9332  | 0.0089  |
| Paving Eq. Other                             | 0.0757    | 0.4084 | 0.4807     | 0.0008       | 0.0315      | 68.9391  | 0.0068  |
| Plate Compactors                             | 0.0050    | 0.0263 | 0.0314     | 0.0001       | 0.0012      | 4.3138   | 0.0005  |
| Pressure Washers                             | 0.0085    | 0.0549 | 0.0650     | 0.0001       | 0.0030      | 9.4135   | 0.0008  |
| Pumps                                        | 0.0376    | 0.2674 | 0.2854     | 0.0006       | 0.0147      | 49.6067  | 0.0034  |
| Roller Compactors                            | 0.0584    | 0.3837 | 0.3793     | 0.0008       | 0.0232      | 67.0402  | 0.0053  |
| Rough Terrain Forklifts                      | 0.0533    | 0.4464 | 0.3494     | 0.0008       | 0.0201      | 70.2808  | 0.0048  |
| Rubber Tired Dozers                          | 0.2118    | 0.8006 | 1.5773     | 0.0025       | 0.0630      | 239.0842 | 0.0191  |
| Rubber Tires Loaders                         | 0.0753    | 0.4406 | 0.4747     | 0.0012       | 0.0235      | 108.6109 | 0.0068  |
| Scrapers                                     | 0.1914    | 0.7938 | 1.3434     | 0.0027       | 0.0541      | 262.4852 | 0.0173  |
| Signal Boards                                | 0.0129    | 0.0912 | 0.0912     | 0.0002       | 0.0042      | 16.6983  | 0.0012  |
| Skid Steer Loaders                           | 0.0222    | 0.2125 | 0.1614     | 0.0004       | 0.0050      | 30.2770  | 0.0020  |
| Surfacing Eq.                                | 0.0823    | 0.3953 | 0.6593     | 0.0017       | 0.0239      | 165.9635 | 0.0074  |
| Sweepers/Scrubbers                           | 0.0584    | 0.4916 | 0.3563     | 0.0009       | 0.0183      | 78.5433  | 0.0053  |
| Tractors                                     | 0.0436    | 0.3616 | 0.2744     | 0.0008       | 0.0134      | 66.7988  | 0.0039  |
| Front End Loaders                            | 0.0436    | 0.3616 | 0.2744     | 0.0008       | 0.0134      | 66.7988  | 0.0039  |
| Backhoes                                     | 0.0436    | 0.3616 | 0.2744     | 0.0008       | 0.0134      | 66.7988  | 0.0039  |
| Trenchers                                    | 0.0933    | 0.4270 | 0.4575     | 0.0007       | 0.0336      | 58.7130  | 0.0084  |
| Welders                                      | 0.0310    | 0.1816 | 0.1735     | 0.0003       | 0.0102      | 25.6027  | 0.0028  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771    | 0.3855 | 1.08       | 0.00014      | 0.1542      | 14.1565  | 0.00037 |
| (gasoline EFs: EPA OMS-AMD Report NR-009A    |           |        |            |              | 2016)       |          |         |

(gasoline EFs: EPA OMS-AMD Report NR-009A, 2-13-98, and SCAQMD EMFAC 2007 CEQA Tables, 2016.)

### Construction Period Emissions, lbs

|                               | U    | onstruction P | eriod Emissio | ns, ibs |      |         |          |      |
|-------------------------------|------|---------------|---------------|---------|------|---------|----------|------|
| Equip.                        |      |               |               |         |      |         |          |      |
| Туре                          |      |               |               |         |      |         |          |      |
|                               | VOC  | CO            | NOx           | SOx     | PM10 | CO2     | CH4      |      |
| Aerial Lifts                  | 6    | 39            | 43            | 0       | 2    | 7917    | 1        |      |
| Air Compressors               | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Bore-Drill Rigs               | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Cement Mixers                 | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Concrete/Industrial Saws      | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Cranes                        | 7    | 30            | 50            | 0       | 2    | 9776    | 1        |      |
| Crawler Tractors/Dozers       | 187  | 939           | 1209          | 2       | 67   | 203522  | 17       |      |
| Crushing/Processing Eq.       | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Dumpers/Tenders               | 35   | 120           | 222           | 0       | 8    | 29140   | 3        |      |
| Excavators                    | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Forklifts                     | 123  | 829           | 649           | 2       | 27   | 208880  | 11       |      |
| Generator Sets                | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Graders                       | 138  | 868           | 876           | 2       | 42   | 199778  | 12       |      |
| Off-Highway Tractors          | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Off-Highway Trucks            | 1067 | 4076          | 6140          | 20      | 207  | 1922564 | 96       |      |
| Other Diesel Construction Eq. | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Other General Industrial Eq.  | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Other Material Handling Eq.   | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Pavers                        | 4    | 22            | 24            | 0       | 2    | 3429    | 0        |      |
| Paving Eq. Other              | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Plate Compactors              | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Pressure Washers              | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Pumps                         | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Roller Compactors             | 7    | 46            | 45            | 0       | 3    | 7978    | 1        |      |
| Rough Terrain Forklifts       | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Rubber Tired Dozers           | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Rubber Tires Loaders          | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Scrapers                      | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Signal Boards                 | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Skid Steer Loaders            | 12   | 112           | 85            | 0       | 3    | 15895   | 1        |      |
| Surfacing Eq.                 | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Sweepers/Scrubbers            | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Tractors                      | 60   | 496           | 376           | 1       | 18   | 91648   | 5        |      |
| Front End Loaders             | 10   | 84            | 63            | 0       | 3    | 15431   | 1        |      |
| Backhoes                      | 11   | 91            | 69            | 0       | 3    | 16833   | 1        |      |
| Trenchers                     | 96   | 441           | 472           | 1       | 35   | 60592   | 9        |      |
| Welders                       | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Gasoline Const Eq.            | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Subonne Const Ly.             | 0    | 0             | 0             | 0       | U    | 0       | U        |      |
| Totals                        | VOC  | СО            | NOx           | SOx     | PM10 | PM2.5   | CO2      | CH4  |
| lbs per const. period         | 1763 | 8191          | 10325         | 30      | 422  | 418.60  | 2793382  | 159  |
| tons per const. period        | 0.9  | 4.1           | 5.2           | 0.015   | 0.21 | 0.21    | 1396.69  | 0.08 |
| Average lbs/day =             | 6.7  | 30.9          | 39.0          | 0.113   | 1.59 | 1.58    | 10541.07 | 0.60 |
| Normalized TPY =              | 0.88 | 4.10          | 5.16          | 0.01    | 0.21 | 0.21    | 1396.69  | 0.00 |
|                               | 0.00 |               | 2.10          | 0.01    | 0,21 | 0.21    | 10,0.07  | 0.00 |

CO2e, tons/period1405.8CO2e, tons/yr:1405.8

N2O 48 0.02 0.18 0.02

CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

Other Assumptions and References:

1. Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08.

Optimum trench construction progress rate is 80m (260ft) per day.

Non-optimum trench construction progress rate is 30m (100 ft) per day.

An average progress of 180 ft/day is used where applicable.

2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness. A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable.

A minimum paving speed of 5 normin (10 normin of 000 norm) was used where applicable.

The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr.

- Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001.
- 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.
- 4. Construction schedule note: applicant data indicates a construction work day period of 8 hours
  - The equipment use rates provided by the applicant are consistent with an 8 hour workday.
- 5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.

| CONSTRUCTIO          | N PHASE      | - SGF 5            |                   |                 |                 |                 |                 |        |
|----------------------|--------------|--------------------|-------------------|-----------------|-----------------|-----------------|-----------------|--------|
| MRILevel 2 Ana       | alysis(Refs  | s1, 3-7)           |                   |                 | Acres           | 1726            |                 |        |
| Acres Subject to C   | Construction | n Disturbance Acti | vites:            |                 |                 | 172.6           |                 |        |
| Max Acres Subjec     | t to Constru | uction Disturbance | Activites on any  | day of this pl  | nase:           | 12.9            | note (10)       |        |
| Emissions Factor f   |              | ,                  |                   |                 |                 | 0.12            |                 |        |
| PM2.5 fraction of    | PM10 (per    | CARB CEIDARS       | SProfiles):       |                 |                 | 0.21            |                 |        |
| Activity Levels:     |              | Hrs/Day:           |                   |                 |                 | 8               |                 |        |
|                      |              | Days/Wk:           |                   |                 |                 | 5               |                 |        |
|                      |              | Days/Month:        | Applicant Data    |                 |                 | 22              |                 |        |
|                      | Phase Cons   | t Period, Months:  |                   |                 |                 | 10              | 0.83            | years  |
|                      | Phase Co     | nst Period, Days:  |                   |                 |                 | 265             |                 |        |
| Wet Season Adju      |              | •                  | -                 | ure 13.2.2-1, 1 | 2/03 or CalEEM  | od, Appendix D  | Table 1.1.)     |        |
| М                    | ean # days/  | year with rain >=  | 0.01 inch:        |                 |                 | 40              |                 |        |
|                      |              | hs/yrwithrain>=    |                   |                 |                 | 1.33            |                 |        |
| A                    | djusted Cor  | nst Period, Months | :                 |                 |                 | 8.89            |                 |        |
| A                    | djusted Cor  | nst Period, Days:  |                   |                 |                 | 232             |                 |        |
|                      |              |                    |                   |                 |                 |                 |                 |        |
| Controlsfor Fug      | itive Dust:  |                    | Pro               | oposed wateri   | ng cycle:       | 3               | times per day   |        |
|                      |              |                    |                   |                 |                 |                 |                 |        |
| 3 watering cycles/   |              |                    |                   |                 |                 |                 |                 |        |
| Speed control of o   | nsite const  | •                  | •                 | •               |                 |                 | , , , , , ,     |        |
|                      |              |                    | control based on  | • ·             | •               | 84              | % control       |        |
|                      |              | Conservative co    | ontrol % used for | emissions esti  | mates:          | 84              | % control       |        |
|                      |              |                    |                   |                 |                 | 0.16            | releasefraction |        |
| Emissions: Contr     |              | PM10               | PM2.5             |                 |                 |                 |                 |        |
|                      | ns/month     | 0.249              | 0.052             |                 |                 |                 |                 |        |
|                      | ns/period    | 2.209              | 0.464             |                 |                 |                 |                 |        |
| Max Ib:              | s/day        | 22.595             | 4.745             |                 |                 |                 |                 |        |
| Soil Handling En     | niccions (C  | ut and Fill): (2)  |                   |                 |                 |                 |                 |        |
| Total cu.yds of soi  |              | ut anu i iii). (2) | 0                 |                 | Mean annual w   | rind speed, mph | (8)             | 8.03   |
| Total tons of soil h |              |                    | 0.0               |                 | Avg. Soil mois  |                 | (0)             | 5      |
| Total days soil har  |              |                    | 232               |                 | Avg. Soil densi |                 |                 | 1.3    |
| Tons soil/day:       |              |                    | 0                 |                 | k factor for PM | • •             |                 | 0.35   |
| Control Eff, water   | ing %        |                    | 80                |                 | Number of Dro   |                 |                 | 4      |
| CONTO LIT, Wald      | •            | ease Fraction:     | 0.2               |                 | Calc 1          | wind            |                 | 1.851  |
|                      | I\GC         |                    | 0.2               |                 | Calc 2          | moisture        |                 | 3.607  |
| Emissions:           | PM10         | PM2.5              |                   |                 | Calc 3          | int             |                 | 0.513  |
| tons/period          | 0.000        | 0.000              |                   |                 | Calc 4          | PM10            | lb/ton          | 0.0006 |
| tons/month           | 0.000        | 0.000              |                   |                 | PM2.5 fraction  |                 | TD/ TO/T        | 0.210  |
| max Ibs/day          | 0.000        | 0.000              |                   |                 | TWZ.5 Traction  | or rivero.      |                 | 0.210  |
| man ing uay          | 0.000        | 0.000              |                   |                 |                 |                 |                 |        |
|                      |              | Emissions Tota     | als               | PM 10           | PM 2.5          |                 |                 |        |
|                      |              |                    | tons/period       | 2.209           | 0.464           |                 |                 |        |
|                      |              |                    |                   |                 | -               |                 |                 |        |

### Methodology References:

(1) MRI Report, South Coast AQMD Project No. 95040, March 1996, Level 2 Analysis Procedure.

MRI Report uncontrolled factor of 0.11 tons/acre/month is based on 168 hours per month of const activity.

For an activity rate of ~180 hrs/month, the adjusted EF would be 0.12 tons/acre/month (uncontrolled).

(2) Soil Handling (Cut and Fill), EPA, AP-42, Section 13.2.4., 11/06.

(3) URBEMIS, Version 9.2.4, User's Manual Appendix A, page A-6.

(4) CARB Area Source Methodology, Section 7.7, 9/02.

(5) WRAP Fugitive Dust Handbook, 9/06.

(6) USEPA, AP-42, Section 13.2.3, 2/10.

(7) Estimating PM Emissions from Construction Operations, USEPA, MRI, 9/99.

(8) Wind speed data for Lemoore met station. Annual avg wind speed = 8.03 mph, % calms = 3.44%.

(9) Soil Moisture; 5% assumed avg value

(10) adjusted applicant value based on 7.5% of total acreage disturbed on any given day

(11) SCAQMD CEQA Handbook 1993.

(12) SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres, Fugitive Dust Mitigations, February 2005.

# OFFSITE PAVED ROAD FUGITIVE DUST EMISSIONS

(associated with delivery truck and worker vehicle traffic on I-5 and plant access road)

| Average mi   | leage for const                        | ruction rela              | ted vehicles:              | NA        | miles, roundtrip distance***                                                    |
|--------------|----------------------------------------|---------------------------|----------------------------|-----------|---------------------------------------------------------------------------------|
| Avg weight   | t of vehicular eo                      | quipment or               | n road:                    | 4.1       | tons (range 2 - 42 tons)                                                        |
| Road surface | cesiltloadingfa                        | actor:                    |                            | 0.015     | g/m2 (range 0.03 - 400 g/m2)<br>Limited Access Freeway >10,000 ADT <b>(I-5)</b> |
| Particlesiz  | e multiplier fac                       | tors:                     | PM10                       | 0.0022    |                                                                                 |
|              |                                        |                           | PM2.5                      | 0.00054   |                                                                                 |
|              |                                        |                           |                            |           |                                                                                 |
| C factors (b | orake and tire w                       | ear):                     | PM10                       | 0.00047   |                                                                                 |
|              |                                        |                           | PM2.5                      | 0.00036   | B/VMT                                                                           |
|              |                                        |                           |                            |           |                                                                                 |
| Avg vehicle  | e speed on road                        | :                         |                            | 65        | mph                                                                             |
|              |                                        |                           |                            |           |                                                                                 |
| Avg. Numb    | per of vehicles p                      | oer day:                  |                            | 195       |                                                                                 |
|              |                                        |                           |                            |           | calculated per Applicant da                                                     |
| Avg. Numb    | per of work days                       | •                         |                            | 22        | VMT/period: 9724890                                                             |
|              |                                        | Т                         | otal vehicles per mont     |           |                                                                                 |
| Number of    | work months:                           |                           |                            | 42.67     | adjusted for precip events                                                      |
|              |                                        | Total ve                  | hicles per const period    | : 183054. | 3                                                                               |
|              | Calc 1<br>Calc 2                       | PM10<br>0.022<br>4.217    | 11 A (A 47                 |           |                                                                                 |
|              | Calc 3                                 | 0.0007                    | Ib/VMT                     |           |                                                                                 |
|              | Emissions<br>Ibs/period<br>tons/period | PM 10<br>6545.80<br>3.273 | PM 2.5<br>1106.24<br>0.553 |           |                                                                                 |

EPA, AP-42, Section 13.2.1, March 2006, updated 9/2008.

PM2.5 fraction of PM10 per CARB CEIDARs is 0.169

\*\*\* Note: avg roundtrip distance traveled by delivery or worker vehicles on freeways (I-5) and other State Routes in the project area.

Vehicles per day: worker + deliveries+staff support vehicles (averages)

# ONSITE UNPAVED ROAD FUGITIVE DUST

| Length of Unpaved Roads                                                                                                                             | on Construction                                   | n site:                                            | 0.1              | miles*                                                                                  |                           |                           |                      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|------------------|-----------------------------------------------------------------------------------------|---------------------------|---------------------------|----------------------|--|
| Avg weight of construction                                                                                                                          | vehicularequi                                     | pment on road:                                     | 4.1              | tons (range 2 - 42 tons)                                                                |                           |                           |                      |  |
| Road surface silt content:<br>Road surface material moisture content:                                                                               |                                                   |                                                    |                  | % (range 1.8 - 35%)<br>% (range 0.03 - 13%)                                             |                           |                           |                      |  |
| Particle size multiplier fact                                                                                                                       | ors:                                              | PM10<br>PM2.5                                      | k<br>1.5<br>0.15 | a<br>0.9<br>0.9                                                                         | b<br>0.45<br>0.45         |                           |                      |  |
| C factors (brake and tire w                                                                                                                         | ear):                                             | PM10<br>PM2.5                                      | 0.00047          | Ib/VMT<br>Ib/VMT                                                                        |                           |                           |                      |  |
| Avg construction vehicle speed on road:                                                                                                             |                                                   |                                                    |                  | mph (range 5-55 mph)                                                                    |                           |                           |                      |  |
| Avg number of constructio                                                                                                                           | n vehicles per o                                  | day:                                               | 74               | **                                                                                      |                           |                           | and the second start |  |
| Number of construction work days per month:<br>Total vehicles per month:<br>Number of construction work months:<br>Total vehicles per const period: |                                                   |                                                    |                  | calculated per Applicant da<br>VMT/period: 9654.24<br>adjusted for precipitation events |                           |                           |                      |  |
| Control reduction due to w                                                                                                                          |                                                   | control, etc. =<br>lease Fraction =                | 80<br>0.8<br>0.2 |                                                                                         |                           |                           |                      |  |
| Calc 1<br>Calc 2<br>Calc 3<br>Calc 4<br>Controlled Ib/VMT                                                                                           | PM10<br>0.733<br>1.151<br>1.266<br>1.266<br>0.253 | PM2.5<br>0.733<br>1.151<br>0.127<br>0.127<br>0.025 |                  | Emissions<br>Ibs/period<br>tons/period                                                  | PM 10<br>2444.91<br>1.222 | PM 2.5<br>245.10<br>0.123 |                      |  |

EPA, AP-42, Section 13.2.2, March 2006

Soil Moisture; 5% avg

Soil silt content: 8.5% per AP-42 for construction site scraper routes

\*\* const equipment plus site support pickups plus

# CONSTRUCTION PHASE - Truck Hauling/Delivery and Site Support Vehicle Emissions

| All Phases                     |                 | ,             |            |            |                 |            |            |            |             |              |        |
|--------------------------------|-----------------|---------------|------------|------------|-----------------|------------|------------|------------|-------------|--------------|--------|
| Delivery/Hauling Vehicle Use   | Rates           |               |            | Emissi     | ons Factors (Ib | os/vmt)    |            |            |             |              |        |
| Delivery Roundtrip Distance:   | 0               | miles         | NOx        | CO         | VOC             | SOx        | PM10       | CO2        |             |              |        |
| Const Days per Period:         | 0               |               | 0.00625339 | 0.00051535 | 0.00011377      | 0.000026   | 3.9844E-05 | 3.10646173 | HDDT        |              |        |
| Avg Deliveries per Day:        | 0               |               | 0.00046982 | 0.00340025 | 7.8173E-05      | 0.000013   | 2.9202E-06 | 1.02361637 | MDGT        |              |        |
| Fraction of Deliveries-Diesel: | 0.95            | HDDT          |            |            | Daily Emise     | ions (lbs) |            |            |             |              |        |
| Fraction of Deliveries-Gas:    | 0.05            | MDGT          | NOx        | СО         | VOC             | SOx        | PM 10      | CO2        | PM 2.5      |              |        |
| Total Delivery VMT:            | 1786890         | per Applicant | 0.000      | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | HDDT         |        |
| Total Daily VMT-Diesel         | 0               |               | 0.000      | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | MDGT         |        |
| Total Daily VMT-Gasoline       | 0               |               |            | -          | Tonsper Con     | st Period  |            |            |             |              |        |
| Total Period VMT-Diesel        | 1697545.5       | 1             | 5.308      | 0.437      | 0.097           | 0.022      | 0.034      | 2636.7     | 0.028       | HDDT         |        |
| Total Period VMT-Gasoline      | 89344.5         |               | 0.021      | 0.152      | 0.003           | 0.001      | 0.000      | 45.7       | 0.000       | MDGT         |        |
| Construction Site Support Ver  | nicle Use Rates | (LDTs)        |            |            | Daily Emissi    | ons. Ibs   |            |            |             |              |        |
| Gasoline Vehicle VMT Period:   | 75900           | (             | NOx        | со         | VOC             | SOx        | PM 10      | CO2        |             |              | PM 2.5 |
| Avg Daily Gasoline VMT:        | 300             |               | 0.00040762 |            |                 | 0.000008   | 5.0718E-06 |            | lbs/vmt*    | LDT gasoline |        |
| Avg Daily Diesel VMT:          | 0               |               | 0.1223     | 1.0778     | 0.0210          | 0.0024     | 0.0015     | 196.2552   | lbs/day     | gasoline     | 0.0010 |
| Total Phase Const Days:        | 240             |               |            |            |                 |            |            |            | , <b>,</b>  | 9            |        |
|                                |                 |               |            |            | Tonsper Co      | nst Period |            |            |             |              |        |
| Ref: EMFAC 2014, SJV APCD      | Year 2016       |               | 0.0155     | 0.1363     | 0.0027          | 0.0003     | 0.0002     | 24.8       | tons/period | gasoline     | 0.0001 |
| LDT1-gas, MDV-gas, HDDT-ds     | sl              |               |            |            |                 |            |            |            |             |              |        |
| See EF data in WSP Support Ap  | pendix          |               |            |            |                 |            |            |            |             |              |        |

### Notes \*\*\*

VMT for delivery/hauling for all vehicles includes: (1) materials deliveries to site, (2) materials removal from site, other VMT as specified below.

Support Vehicle VMT: best estimate at time of filing, 10 LDT (gasoline) at 30 VMT/day

CARB-CEIDARS, Updated Fractions for PM Profiles: PM2.5 = 0.991 of PM10 for Diesel Exhaust, and 0.998 for Gasoline Vehicles.

# CONSTRUCTION PHASE - Worker Travel - Emissions

|                                                                     |                  |           |              |             | LDA-gas             |                                     |               |             |        |  |
|---------------------------------------------------------------------|------------------|-----------|--------------|-------------|---------------------|-------------------------------------|---------------|-------------|--------|--|
| Worker Travel to Site                                               |                  |           |              |             | See EF data II      | n WSP Support A                     | Appendix      |             |        |  |
| Avg Occupancy/Vehicle:                                              | 0                |           |              |             |                     |                                     |               |             |        |  |
| Avg Roundtrip Distance, miles:                                      | 0.0              |           |              |             | ns Factors (lbs     | ,                                   |               |             |        |  |
| A vg # of Worker Vehicles, per day:                                 | 0                |           | NOx          | CO          | VOC                 | SOx                                 | PM10          | CO2         |        |  |
| Avg Daily Worker VMT:                                               | 0                |           | 0.00013058   | 0.001103197 | 2.504E-05           | 0.000007                            | 0.000004      | 0.65463696  |        |  |
| Max # of Worker Vehicles, per day:                                  | 0                |           |              |             |                     |                                     |               |             |        |  |
| Max Daily Worker VMT:                                               | 0                |           |              |             | aily Emission:      | • •                                 |               |             |        |  |
| Total Const Days:                                                   | 240              |           | NOx          | CO          | VOC                 | SOx                                 | PM10          | CO2         | PM2.5  |  |
| Total Const Period Worker VMT:                                      | 7938000          | Avg       | 0.00         | 0.00        | 0.00                | 0.00                                | 0.00          | 0.00        | 0.00   |  |
| VMT data suppli                                                     | ed by Applicant. |           |              |             |                     |                                     |               |             |        |  |
|                                                                     |                  |           |              |             | nsperConst          |                                     |               |             |        |  |
|                                                                     |                  | Avg       | 0.518        | 4.379       | 0.099               | 0.028                               | 0.016         | 2598.3      | 0.000  |  |
| Werker Troubly During from Storing                                  | A.r              |           |              |             |                     |                                     |               |             |        |  |
| Worker Travel by Busing from Staging<br>Total Bus VMT/Const Period: |                  |           | d Tripo/Dory | 0           | 201                 |                                     |               | Voor 2016   |        |  |
|                                                                     | 0                |           | d Trips/Day: | 0           | max                 | Ref: SJVAPCD<br>All other buses-    |               | , real 2010 |        |  |
| Avg Bus VMT/Const Day:                                              | 0<br>0           | Bus Occup | pancy/Trip:  | 0           |                     | See EF data in WSP Support Appendix |               |             |        |  |
| Max Bus VMT/Const Day:                                              | 0                |           |              |             |                     | See Er dala m                       | WSP Support A | rpendix     |        |  |
|                                                                     |                  |           |              | Emissio     | ns Factors (Ibs     | ∕VMT)                               |               |             |        |  |
| # buses supplied by Applicant.                                      |                  |           | NOx          | CO          | voc`                | SOx                                 | PM10          | CO2         |        |  |
|                                                                     |                  |           | 0.012001     | 0.001203    | 0.000458            | 0.000026                            | 0.00015       | 2.734838    |        |  |
|                                                                     |                  |           |              |             |                     |                                     |               |             |        |  |
|                                                                     |                  |           |              | Da          | aily Emission       | s(lbs)                              |               |             |        |  |
|                                                                     |                  |           | NOx          | СО          | VOC                 | SOx                                 | PM 10         | CO2         | PM 2.5 |  |
|                                                                     |                  | Avg       | 0.00         | 0.00        | 0.00                | 0.00                                | 0.00          | 0.00        | 0.00   |  |
|                                                                     |                  | Max       | 0.00         | 0.00        | 0.00                | 0.00                                | 0.00          | 0.00        | 0.00   |  |
|                                                                     |                  |           |              |             | Tono nor Co         | not Doriod                          |               |             |        |  |
|                                                                     |                  | Avg       | 0.000        | 0.000       | Tonsper Co<br>0.000 | 0.000                               | 0.000         | 0.000       | 0.000  |  |
|                                                                     |                  | 3         |              |             |                     |                                     |               |             |        |  |

Ref: SJVAPCD EMFAC 2014, Year 2020

### **CONSTRUCTION PHASE - Trackout Emissions**

| Paved Road Length (miles):       | 0.1          | estimated rou   | undtrip trackout distance |                 |             |
|----------------------------------|--------------|-----------------|---------------------------|-----------------|-------------|
| Daily # of Vehicles:             | 74           |                 |                           |                 |             |
| Avg Vehicle Weight (tons):       | 6.8          |                 | PM 10                     | PM 2.5*         |             |
| Total Unadjusted VMT/day         | 7.4          |                 | 0.361                     |                 |             |
| Particle Size Multipliers        | PM10         |                 | 1.924                     |                 |             |
| Ib/VMT                           | 0.023        |                 | 0.002                     | 0.0004          | lb/VMT      |
| C factor, Ib/VMT                 | 0.00047      |                 | 0.129                     | 0.0217          | lbs/day     |
| Road Sfc Silt Loading (g/m^2):   | 0.56         | local X 2       | 0.001                     | 0.0002          | tons/month  |
| # of Active Trackout Points:     | 1            | * *             | 0.01                      | 0.0021          | tons/period |
| Added Trackout Miles:            | PM10         |                 |                           |                 |             |
| Trackout VMT/day:                | 44           |                 | Default Silt Load Valu    | les for Paved I | Road Types  |
| Final Adjusted VMT/day           | 52           |                 | Freeway                   | 0.02 g/m2       |             |
| Final Adjusted VMT/month         | 1140         |                 | Arterial                  | 0.036 g/m2      |             |
| Final Adjusted VMT/period        | 10131        |                 | Collector                 | 0.036 g/m2      |             |
| Construction days/month:         | 22           |                 | Local                     | 0.28 g/m2       |             |
| Adj. Construction months/period: | 8.89         |                 | Rural                     | 1.6 g/m2        |             |
| Control Applied to Trackout:     | Gravel entra | nce, metal clea | ning grates, water washi  | ng, sweeping    |             |
| Control Efficiency, %            | 84           | 0.84            | Release Factor =          | 0.16            |             |

\* PM2.5 fraction of PM10 assumed to be 0.169 (CARB CEIDARS updated fraction values) for paved roads.

\*\* 1 controlled ingress/egress point is planned for site construction

EPA, AP-42, Section 13.2.1, Proposed revisions dated 9/2008.

Use silt loading factor from default values for road type if no site specific data is available.

Trackout effects approximately 0.05 mi. of roadway arriving and departing from the site access point.

Plant access road is already paved. Entrance will be gravelled with metal grates for take out control.

Vehicle count = delivery trucks plus site support trucks (see Unpaved Onsite tab)

Worker vehicles not counted for trackout, they will park on the site perimeter.

SGF 6

2024

|                    | Tons/Per | iod   |      |      |       |         |       |        |
|--------------------|----------|-------|------|------|-------|---------|-------|--------|
|                    |          |       |      |      |       | F       | Fug I | Fug    |
|                    | NOx      | CO    | VOC  | SOx  | PM 10 | CO2     | PM 10 | PM 2.5 |
| on-off site travel | 5.54     | 4.83  | 0.19 | 0.05 | 0.05  | 4547    | 7.57  | 1.34   |
| on-site equipment  | 8.66     | 7.01  | 1.51 | 0.02 | 0.38  | 2228    |       |        |
| Total              | 14.20    | 11.83 | 1.70 | 0.07 | 0.43  | 6774    | 7.57  | 1.34   |
| Months:            | 16       |       |      |      |       |         |       |        |
| Max Year Months:   | 12       |       |      |      |       |         |       |        |
| Total per Year:    | 10.65    | 8.88  | 1.28 | 0.05 | 0.32  | 5080.87 | 5.68  | 1.00   |

# CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

# WSP Main Site Construction-SGF 6

### Assumptions:

Project:

1. The average engines employed in construction equipment use consumes fuel at a rate of:

Ref: EPA, NR-009b Publication, November 2002.

Ref: Sacramento County APCD Const. Program Data, V. 6.0.3, 3/2007.

Ref: EPA, NR-009c Publication, EPA 420-P-04-009, April 2004.

Ref: Niland Energy Project, IID, AFC Vol 2, App A.

Ref: South Coast AQMD PR XXI, Draft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03. The above noted references present fuel consumption values which range from 0.050 to 0.064 gal/hp-hr for diesel engines used in construction related equipment. The value of 0.060 gal/hp-hr was chosen as a reasonable upper mid-range value for construction diesel emissions calculations. For gasoline the mid-range value from SCAQMD of 0.11 gal/hp-hr was used.

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:               | 20.5<br>8<br>1.71 | months<br>hrs/day<br>years | Construction Totals: | 164<br>3360<br>420      | hrs/month<br>hrs/const period<br>days/const period |
|-----------------------------------------|-------------------|----------------------------|----------------------|-------------------------|----------------------------------------------------|
| 5. Anticipated Construction Start Year: |                   | 2022                       | 7.                   | N2O EF die<br>N2O EF ga | esel, lb/gal: 0.000183<br>soline, lb/gal: 0.000164 |
| 6. Maximum anticipated equipment use    | month is:         | n/a                        |                      |                         | ndatory GHG Reporting Regulation ppendix A, 2007.  |

Equipment types and use rates supplied by the Applicant.

|                               | Weighted<br>Average | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site | Total   | Total Hrs<br>per Const | Total<br>HP-Hrs |
|-------------------------------|---------------------|------------------------|-----------------|----------------------|---------|------------------------|-----------------|
| Equipment Category**          | HP                  | Project                | Hrs/day         | (each)               | Hrs/Day | Period                 | Period          |
| Aerial Lifts                  | 63                  | 1                      | 6               | 56                   | 6       | 336                    | 21168           |
| Air Compressors               | 78                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Bore-Drill Rigs               | 206                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cement Mixers                 | 9                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Concrete/Industrial Saws      | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cranes                        | 226                 | 1                      | 2               | 56                   | 2       | 112                    | 25312           |
| Crawler Tractors/Dozers       | 208                 | 3                      | 7               | 125                  | 21      | 2625                   | 546000          |
| Crushing/Processing Eq.       | 85                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Dumpers/Tenders/Water Trucks  | 16                  | 7                      | 7               | 115                  | 49      | 5635                   | 90160           |
| Excavators                    | 163                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Forklifts                     | 89                  | 8                      | 6               | 120                  | 48      | 5760                   | 512640          |
| Generator Sets                | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Graders                       | 175                 | 5                      | 7               | 65                   | 35      | 2275                   | 398125          |
| Off-Highway Tractors          | 123                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Off-Highway Trucks            | 400                 | 12                     | 7               | 132                  | 84      | 11088                  | 4435200         |
| Other Diesel Construction Eq. | 172                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other General Industrial Eq.  | 88                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other Material Handling Eq.   | 167                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pavers                        | 126                 | 1                      | 4               | 17                   | 4       | 68                     | 8568            |
| Paving Eq. Other              | 131                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Plate Compactors              | 8                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pressure Washers              | 13                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pumps                         | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Roller Compactors             | 81                  | 1                      | 7               | 25                   | 7       | 175                    | 14175           |
| Rough Terrain Forklifts       | 100                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tired Dozers           | 255                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tires Loaders          | 200                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Scrapers                      | 362                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Signal Boards                 | 6                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Skid Steer Loaders            | 65                  | 1                      | 7               | 113                  | 7       | 791                    | 51415           |
| Surfacing Eq.                 | 254                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Sweepers/Scrubbers            | 64                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Tractors                      | 98                  | 2                      | 7               | 147                  | 14      | 2058                   | 201684          |
| Front End Loaders (single     | 98                  | 1                      | 7               | 50                   | 7       | 350                    | 34300           |
| Backhoes category)            | 98                  | 1                      | 4               | 95                   | 4       | 380                    | 37240           |
| Trenchers                     | 81                  | 10                     | 4               | 141                  | 40      | 5640                   | 456840          |
| Welders                       | 46                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Gasoline Const Eq.            | 175                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |

| Const Period Diesel Hp-Hrs =     | 6832827 |      |
|----------------------------------|---------|------|
| Const Period Gasoline Hp-Hrs =   | 0       |      |
| Const Period Diesel Fuel Use =   | 409970  | gals |
| Const Period Gasoline Fuel Use = | 0       | gals |

gal/hp-hr

gal/hp-hr

0.06

0.11

diesel

gasoline

Offroad equipment emissions factors derived SCAQMD Off Road database for 2020.

The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              |           |        | 2020 Equip | oment Emissi | ons Factors | ors      |         |  |  |  |  |
|----------------------------------------------|-----------|--------|------------|--------------|-------------|----------|---------|--|--|--|--|
| Equip.                                       | lbs/hr    | lbs/hr | lbs/hr     | lbs/hr       | lbs/hr      | lbs/hr   | lbs/hr  |  |  |  |  |
| Туре                                         | VOC (ROG) | CO     | NOx        | SOx          | PM10        | CO2      | CH4     |  |  |  |  |
| Aerial Lifts                                 | 0.0261    | 0.1696 | 0.1866     | 0.0004       | 0.0092      | 34.7217  | 0.0024  |  |  |  |  |
| Air Compressors                              | 0.0483    | 0.3077 | 0.3255     | 0.0007       | 0.0185      | 63.6073  | 0.0044  |  |  |  |  |
| Bore-Drill Rigs                              | 0.0480    | 0.5008 | 0.3439     | 0.0017       | 0.0062      | 164.8622 | 0.0043  |  |  |  |  |
| Cement Mixers                                | 0.0086    | 0.0415 | 0.0536     | 0.0001       | 0.0021      | 7.2481   | 0.0008  |  |  |  |  |
| Concrete/Industrial Saws                     | 0.0484    | 0.3783 | 0.3410     | 0.0007       | 0.0196      | 58.4636  | 0.0044  |  |  |  |  |
| Cranes                                       | 0.0898    | 0.3917 | 0.6610     | 0.0014       | 0.0256      | 128.6305 | 0.0081  |  |  |  |  |
| Crawler Tractors/Dozers                      | 0.1049    | 0.5260 | 0.6772     | 0.0013       | 0.0378      | 114.0177 | 0.0095  |  |  |  |  |
| Crushing/Processing Eq.                      | 0.0934    | 0.6247 | 0.5983     | 0.0015       | 0.0310      | 132.3083 | 0.0084  |  |  |  |  |
| Dumpers/Tenders                              | 0.0092    | 0.0314 | 0.0582     | 0.0001       | 0.0022      | 7.6244   | 0.0008  |  |  |  |  |
| Excavators                                   | 0.0733    | 0.5124 | 0.4042     | 0.0013       | 0.0184      | 119.5795 | 0.0066  |  |  |  |  |
| Forklifts                                    | 0.0320    | 0.2160 | 0.1691     | 0.0006       | 0.0070      | 54.3958  | 0.0029  |  |  |  |  |
| Generator Sets                               | 0.0395    | 0.2732 | 0.3232     | 0.0007       | 0.0150      | 60.9927  | 0.0036  |  |  |  |  |
| Graders                                      | 0.0919    | 0.5765 | 0.5823     | 0.0015       | 0.0280      | 132.7430 | 0.0083  |  |  |  |  |
| Off-Highway Tractors                         | 0.1470    | 0.6517 | 1.0657     | 0.0017       | 0.0497      | 151.4031 | 0.0133  |  |  |  |  |
| Off-Highway Trucks                           | 0.1443    | 0.5514 | 0.8306     | 0.0027       | 0.0280      | 260.0871 | 0.0130  |  |  |  |  |
| Other Diesel Construction Eq.                | 0.0563    | 0.3508 | 0.3519     | 0.0013       | 0.0139      | 122.4967 | 0.0051  |  |  |  |  |
| Other General Industrial Eq.                 | 0.0983    | 0.4517 | 0.6661     | 0.0016       | 0.0262      | 152.2399 | 0.0089  |  |  |  |  |
| Other Material Handling Eq.                  | 0.0924    | 0.4429 | 0.6500     | 0.0015       | 0.0252      | 141.1941 | 0.0083  |  |  |  |  |
| Pavers                                       | 0.0989    | 0.4920 | 0.5450     | 0.0009       | 0.0355      | 77.9332  | 0.0089  |  |  |  |  |
| Paving Eq. Other                             | 0.0757    | 0.4084 | 0.4807     | 0.0008       | 0.0315      | 68.9391  | 0.0068  |  |  |  |  |
| Plate Compactors                             | 0.0050    | 0.0263 | 0.0314     | 0.0001       | 0.0012      | 4.3138   | 0.0005  |  |  |  |  |
| Pressure Washers                             | 0.0085    | 0.0549 | 0.0650     | 0.0001       | 0.0030      | 9.4135   | 0.0008  |  |  |  |  |
| Pumps                                        | 0.0376    | 0.2674 | 0.2854     | 0.0006       | 0.0147      | 49.6067  | 0.0034  |  |  |  |  |
| Roller Compactors                            | 0.0584    | 0.3837 | 0.3793     | 0.0008       | 0.0232      | 67.0402  | 0.0053  |  |  |  |  |
| Rough Terrain Forklifts                      | 0.0533    | 0.4464 | 0.3494     | 0.0008       | 0.0201      | 70.2808  | 0.0048  |  |  |  |  |
| Rubber Tired Dozers                          | 0.2118    | 0.8006 | 1.5773     | 0.0025       | 0.0630      | 239.0842 | 0.0191  |  |  |  |  |
| Rubber Tires Loaders                         | 0.0753    | 0.4406 | 0.4747     | 0.0012       | 0.0235      | 108.6109 | 0.0068  |  |  |  |  |
| Scrapers                                     | 0.1914    | 0.7938 | 1.3434     | 0.0027       | 0.0541      | 262.4852 | 0.0173  |  |  |  |  |
| Signal Boards                                | 0.0129    | 0.0912 | 0.0912     | 0.0002       | 0.0042      | 16.6983  | 0.0012  |  |  |  |  |
| Skid Steer Loaders                           | 0.0222    | 0.2125 | 0.1614     | 0.0004       | 0.0050      | 30.2770  | 0.0020  |  |  |  |  |
| Surfacing Eq.                                | 0.0823    | 0.3953 | 0.6593     | 0.0017       | 0.0239      | 165.9635 | 0.0074  |  |  |  |  |
| Sweepers/Scrubbers                           | 0.0584    | 0.4916 | 0.3563     | 0.0009       | 0.0183      | 78.5433  | 0.0053  |  |  |  |  |
| Tractors                                     | 0.0436    | 0.3616 | 0.2744     | 0.0008       | 0.0134      | 66.7988  | 0.0039  |  |  |  |  |
| Front End Loaders                            | 0.0436    | 0.3616 | 0.2744     | 0.0008       | 0.0134      | 66.7988  | 0.0039  |  |  |  |  |
| Backhoes                                     | 0.0436    | 0.3616 | 0.2744     | 0.0008       | 0.0134      | 66.7988  | 0.0039  |  |  |  |  |
| Trenchers                                    | 0.0933    | 0.4270 | 0.4575     | 0.0007       | 0.0336      | 58.7130  | 0.0084  |  |  |  |  |
| Welders                                      | 0.0310    | 0.1816 | 0.1735     | 0.0003       | 0.0102      | 25.6027  | 0.0028  |  |  |  |  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771    | 0.3855 | 1.08       | 0.00014      | 0.1542      | 14.1565  | 0.00037 |  |  |  |  |
| (gasoline EFs: EPA OMS-AMD Report NR-009A    |           |        |            |              | 2016)       |          |         |  |  |  |  |

(gasoline EFs: EPA OMS-AMD Report NR-009A, 2-13-98, and SCAQMD EMFAC 2007 CEQA Tables, 2016.)

### Construction Period Emissions, lbs

|                               | U    | onstruction P | erioa Emissio | ns, ibs |      |         |          |      |
|-------------------------------|------|---------------|---------------|---------|------|---------|----------|------|
| Equip.                        |      |               |               |         |      |         |          |      |
| Туре                          |      |               |               |         |      |         |          |      |
|                               | VOC  | СО            | NOx           | SOx     | PM10 | CO2     | CH4      |      |
| Aerial Lifts                  | 9    | 57            | 63            | 0       | 3    | 11666   | 1        |      |
| Air Compressors               | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Bore-Drill Rigs               | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Cement Mixers                 | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Concrete/Industrial Saws      | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Cranes                        | 10   | 44            | 74            | 0       | 3    | 14407   | 1        |      |
| Crawler Tractors/Dozers       | 275  | 1381          | 1778          | 3       | 99   | 299296  | 25       |      |
| Crushing/Processing Eq.       | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Dumpers/Tenders               | 52   | 177           | 328           | 1       | 12   | 42963   | 5        |      |
| Excavators                    | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Forklifts                     | 184  | 1244          | 974           | 3       | 40   | 313320  | 17       |      |
| Generator Sets                | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Graders                       | 209  | 1312          | 1325          | 3       | 64   | 301990  | 19       |      |
| Off-Highway Tractors          | 0    | 0             | 0             | 0       | 04   | 0       | 0        |      |
| Off-Highway Trucks            | 1600 | 6114          | 9210          | 30      | 310  | 2883846 | 144      |      |
| Other Diesel Construction Eq. |      |               |               |         |      | 2003040 |          |      |
| 1                             | 0    | 0             | 0             | 0       | 0    |         | 0        |      |
| Other General Industrial Eq.  | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Other Material Handling Eq.   | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Pavers                        | /    | 33            | 37            | 0       | 2    | 5299    | 1        |      |
| Paving Eq. Other              | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Plate Compactors              | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Pressure Washers              | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Pumps                         | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Roller Compactors             | 10   | 67            | 66            | 0       | 4    | 11732   | 1        |      |
| Rough Terrain Forklifts       | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Rubber Tired Dozers           | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Rubber Tires Loaders          | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Scrapers                      | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Signal Boards                 | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Skid Steer Loaders            | 18   | 168           | 128           | 0       | 4    | 23949   | 2        |      |
| Surfacing Eq.                 | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Sweepers/Scrubbers            | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Tractors                      | 90   | 744           | 565           | 2       | 28   | 137472  | 8        |      |
| Front End Loaders             | 15   | 127           | 96            | 0       | 5    | 23380   | 1        |      |
| Backhoes                      | 17   | 137           | 104           | 0       | 5    | 25384   | 1        |      |
| Trenchers                     | 526  | 2408          | 2580          | 4       | 190  | 331141  | 47       |      |
| Welders                       | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Gasoline Const Eq.            | 0    | 0             | 0             | 0       | 0    | 0       | 0        |      |
| Totals                        | VOC  | СО            | NOx           | SOx     | PM10 | PM2.5   | CO2      | CH4  |
| lbs per const. period         | 3022 | 14013         | 17327         | 48      | 769  | 762.43  | 4425846  | 272  |
| tons per const. period        | 1.5  | 7.0           | 8.7           | 0.024   | 0.38 | 0.38    | 2212.92  | 0.14 |
| Average lbs/day =             | 7.2  | 33.4          | 41.3          | 0.114   | 1.83 | 1.82    | 10537.73 | 0.65 |
| Normalized TPY =              | 0.9  | 4.1           | 5.1           | 0.0     | 0.2  | 0.2     | 1295.4   | 0.1  |
|                               | 0.7  |               | 2.1           | 0.0     | 0.2  | 0.2     | 12/011   |      |

 CO2e, tons/period
 2227.5

 CO2e, tons/yr:
 1303.9

N2O 75 0.04 0.18 0.022

CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

Other Assumptions and References:

- 1. Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08.
  - Optimum trench construction progress rate is 80m (260ft) per day.
  - Non-optimum trench construction progress rate is 30m (100 ft) per day.
  - An average progress of 180 ft/day is used where applicable.
- 2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness.
- A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable.

The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr.

- Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001.
- 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.
- 4. Construction schedule note: applicant data indicates a construction work day period of 8 hours
  - The equipment use rates provided by the applicant are consistent with an 8 hour workday.
- 5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.

| CONSTRUCTI         | ON PHASE       | - SGF 6             |                    |                |                      |                |                  |        |
|--------------------|----------------|---------------------|--------------------|----------------|----------------------|----------------|------------------|--------|
| MRILevel 2 Ar      | nalysis(Refs   | 1, 3-7)             |                    |                | Acres                | 1612           |                  |        |
| A cres Subject to  | Construction   | Disturbance Acti    | vites:             |                |                      | 161.2          |                  |        |
| Max Acres Subje    | ect to Constru | uction Disturbance  | Activites on any   | day of this pl | hase:                | 12.1           | note (10)        |        |
| Emissions Factor   | r for PM10 U   | ncontrolled, tons/a | acre/month:        |                |                      | 0.12           |                  |        |
| PM2.5 fraction of  | of PM10 (per   | CARB CEIDARS        | Profiles):         |                |                      | 0.21           |                  |        |
| Activity Levels:   |                | Hrs/Day:            |                    |                |                      | 8              |                  |        |
|                    |                | Days/Wk:            |                    |                |                      | 5              |                  |        |
|                    |                | Days/Month:         | Applicant Data     |                |                      | 22             |                  |        |
|                    | Phase Cons     | t Period, Months:   |                    |                |                      | 16             | 1.33             | years  |
|                    | Phase Co       | nst Period, Days:   |                    |                |                      | 352            |                  |        |
| Wet Season Ad      | justment:      | (Per AP-42, Sec     | tion 13.2.2, Figu  | re 13.2.2-1, 1 | 2/03 or CalEEMo      | d, Appendix D  | Table 1.1.)      |        |
| ſ                  | Vlean # days/  | yearwithrain>=0     | 0.01 inch:         |                |                      | 40             |                  |        |
| ſ                  | Vlean # montl  | hs/yrwithrain>=     | 0.01 inch:         |                |                      | 1.33           |                  |        |
| /                  | Adjusted Con   | st Period, Months   | :                  |                |                      | 14.22          |                  |        |
| 1                  | Adjusted Con   | st Period, Days:    |                    |                |                      | 299            |                  |        |
|                    |                |                     |                    |                |                      |                |                  |        |
| Controlsfor Fu     | gitive Dust:   |                     | Pro                | posed wateri   | ng cycle:            | 3              | times per day    |        |
|                    |                |                     |                    |                |                      |                |                  |        |
|                    |                |                     |                    |                | or non-desert sites. |                |                  |        |
| Speed control of   | onsite const t | traffic to <15 mph  | yields a 40-70%    | reduction (us  | e 50% control as c   | onservativefor | site). (11)(12)  |        |
|                    |                | Calculated %        | control based on i | mitigations pr | oposed:              | 84             | % control        |        |
|                    |                | Conservative co     | ontrol % used for  | emissions est  | imates:              | 84             | % control        |        |
|                    |                |                     |                    |                |                      | 0.16           | release fraction |        |
| Emissions: Con     | trolled        | PM10                | PM2.5              |                |                      |                |                  |        |
| t                  | ons/month      | 0.232               | 0.049              |                |                      |                |                  |        |
|                    | ons/period     | 3.301               | 0.693              |                |                      |                |                  |        |
| Max I              | bs/day         | 21.103              | 4.432              |                |                      |                |                  |        |
|                    |                |                     |                    |                |                      |                |                  |        |
| Soil Handling E    | •              | ut and Fill): (2)   |                    |                |                      |                |                  |        |
| Total cu.yds of s  |                |                     | 0                  |                | Mean annual wi       |                | : (8)            | 8.03   |
| Total tons of soil |                |                     | 0.0                |                | Avg. Soil moist      |                |                  | 5      |
| Total days soil h  | andled:        |                     | 299                |                | Avg. Soil densit     |                |                  | 1.3    |
| Tons soil/day:     |                |                     | 0                  |                | k factor for PM1     |                |                  | 0.35   |
| Control Eff, wate  | •              |                     | 80                 |                | Number of Drop       | •              |                  | 4      |
|                    | Rele           | ease Fraction:      | 0.2                |                | Calc 1               | wind           |                  | 1.851  |
|                    | _              | _                   |                    |                | Calc 2               | moisture       |                  | 3.607  |
| Emissions:         | PM10           | PM2.5               |                    |                | Calc 3               | int            |                  | 0.513  |
| tons/period        | 0.000          | 0.000               |                    |                | Calc 4               | PM10           | lb/ton           | 0.0006 |
| tons/month         | 0.000          | 0.000               |                    |                | PM2.5 fraction       | of PM10:       |                  | 0.210  |
| max Ibs/day        | 0.000          | 0.000               |                    |                |                      |                |                  |        |
|                    |                |                     |                    |                |                      |                |                  |        |
|                    |                | EmissionsTota       |                    | PM 10          | PM 2.5               |                |                  |        |
|                    |                |                     | tons/period        | 3.301          | 0.693                |                |                  |        |
|                    |                |                     |                    |                |                      |                |                  |        |

### Methodology References:

(1) MRI Report, South Coast AQMD Project No. 95040, March 1996, Level 2 Analysis Procedure.

MRI Report uncontrolled factor of 0.11 tons/acre/month is based on 168 hours per month of const activity.

For an activity rate of ~180 hrs/month, the adjusted EF would be 0.12 tons/acre/month (uncontrolled).

(2) Soil Handling (Cut and Fill), EPA, AP-42, Section 13.2.4., 11/06.

(3) URBEMIS, Version 9.2.4, User's Manual Appendix A, page A-6.

(4) CARB Area Source Methodology, Section 7.7, 9/02.

(5) WRAP Fugitive Dust Handbook, 9/06.

(6) USEPA, AP-42, Section 13.2.3, 2/10.

(7) Estimating PM Emissions from Construction Operations, USEPA, MRI, 9/99.

(8) Wind speed data for Lemoore met station. Annual avg wind speed = 8.03 mph, % calms = 3.44%.

(9) Soil Moisture; 5% assumed avg value

(10) adjusted applicant value based on 7.5% of total acreage disturbed on any given day

(11) SCAQMD CEQA Handbook 1993.

(12) SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres, Fugitive Dust Mitigations, February 2005.

# OFFSITE PAVED ROAD FUGITIVE DUST EMISSIONS

(associated with delivery truck and worker vehicle traffic on I-5 and plant access road)

| A verage mi                           | Average mileage for construction related vehicles: |                           |                            |         | NA      | miles, roundtrip distance***                                                    |
|---------------------------------------|----------------------------------------------------|---------------------------|----------------------------|---------|---------|---------------------------------------------------------------------------------|
| Avg weight                            | of vehiculared                                     | quipment or               | n road:                    |         | 4.1     | tons (range 2 - 42 tons)                                                        |
| Road surface                          | cesiltloadingfa                                    | actor:                    |                            |         | 0.015   | g/m2 (range 0.03 - 400 g/m2)<br>Limited Access Freeway >10,000 ADT <b>(I-5)</b> |
| Particlesiz                           | e multiplier fac                                   | tors:                     | PM1                        | 0       | 0.0022  | Ib/VMT                                                                          |
|                                       |                                                    |                           | PM2                        |         | 0.00054 | Ib/VMT                                                                          |
|                                       |                                                    |                           |                            |         |         |                                                                                 |
| C factors (brake and tire wear): PM10 |                                                    |                           |                            | 0.00047 | Ib/VMT  |                                                                                 |
|                                       |                                                    |                           | PM2                        | 2.5     | 0.00036 | Ib/VMT                                                                          |
|                                       |                                                    |                           |                            |         |         |                                                                                 |
| Avg vehicle                           | e speed on road                                    | :                         |                            |         | 65      | mph                                                                             |
|                                       |                                                    |                           |                            |         |         |                                                                                 |
| Avg. Numb                             | er of vehicles p                                   | er day:                   |                            |         | 195     |                                                                                 |
|                                       |                                                    |                           |                            |         |         | calculated per Applicant da                                                     |
| Avg. Numb                             | er of work days                                    | •                         |                            |         | 22      | VMT/period: 9184618.3                                                           |
|                                       |                                                    | T                         | otal vehicles per mo       | onth:   | 4290    |                                                                                 |
| Number of                             | work months:                                       |                           |                            |         | 18.22   | adjusted for precip events                                                      |
|                                       |                                                    | Total veh                 | nicles per const per       | iod:    | 78163.8 |                                                                                 |
|                                       | Calc 1<br>Calc 2                                   | PM10<br>0.022<br>4.217    |                            |         |         |                                                                                 |
|                                       | Calc 3                                             | 0.0007                    | Ib/VMT                     |         |         |                                                                                 |
|                                       | Emissions<br>Ibs/period<br>tons/period             | PM 10<br>6182.15<br>3.091 | PM 2.5<br>1044.78<br>0.522 |         |         |                                                                                 |

EPA, AP-42, Section 13.2.1, March 2006, updated 9/2008.

PM2.5 fraction of PM10 per CARB CEIDARs is 0.169

\*\*\* Note: avg roundtrip distance traveled by delivery or worker vehicles on freeways (I-5) and other State Routes in the project area.

Vehicles per day: worker + deliveries+staff support vehicles (averages)

# ONSITE UNPAVED ROAD FUGITIVE DUST

| Length of Unpaved Roads                                               | 0.1            | miles*                                                           |                        |                       |                                             |                                   |  |  |  |
|-----------------------------------------------------------------------|----------------|------------------------------------------------------------------|------------------------|-----------------------|---------------------------------------------|-----------------------------------|--|--|--|
| Avg weight of construction                                            | n vehicular eo | quipment on road:                                                | 4.1                    | tons (range 2         | - 42 tons)                                  |                                   |  |  |  |
| Road surface silt content:<br>Road surface material moisture content: |                |                                                                  |                        | · -                   | % (range 1.8 - 35%)<br>% (range 0.03 - 13%) |                                   |  |  |  |
| Particle size multiplier fact                                         | tors:          | PM10<br>PM2.5                                                    | k<br>1.5<br>0.15       | a<br>0.9<br>0.9       | b<br>0.45<br>0.45                           |                                   |  |  |  |
| C factors (brake and tire w                                           | ear):          | PM10<br>PM2.5                                                    | 0.00047<br>0.00036     | Ib/VMT<br>Ib/VMT      |                                             |                                   |  |  |  |
| Avg construction vehicles                                             | 5              | mph (range 5-55 mph)                                             |                        |                       |                                             |                                   |  |  |  |
| Avg number of constructio                                             | n vehicles pe  | er day:                                                          | 74                     | * *                   |                                             |                                   |  |  |  |
| Number of construction wa                                             |                |                                                                  | 22<br>1628             | VMT/period: 9117.8933 |                                             |                                   |  |  |  |
| Number of construction wa                                             | ork months:    | Total vehicles per month:<br>Number of construction work months: |                        |                       |                                             | adjusted for precipitation events |  |  |  |
|                                                                       | 91178 933      |                                                                  |                        |                       |                                             |                                   |  |  |  |
| Control reduction due to w                                            |                | cles per const period:<br>d control, etc. =                      | 91178.933<br>80<br>0.8 |                       |                                             |                                   |  |  |  |
| Control reduction due to w                                            | atering, spee  | • •                                                              |                        |                       |                                             |                                   |  |  |  |

EPA, AP-42, Section 13.2.2, March 2006

Soil Moisture; 5% avg

Soil silt content: 8.5% per AP-42 for construction site scraper routes

\*\* const equipment plus site support pickups plus

#### CONSTRUCTION PHASE - Truck Hauling/Delivery and Site Support Vehicle Emissions All Phases

|                                    | All Phases                      |            |               |                      |            |                 |            |            |             |          |              |        |
|------------------------------------|---------------------------------|------------|---------------|----------------------|------------|-----------------|------------|------------|-------------|----------|--------------|--------|
|                                    | Delivery/Hauling Vehicle Use Ra | ates       |               |                      | Emissio    | ons Factors (Ib | s/vmt)     |            |             |          |              |        |
|                                    | Delivery Roundtrip Distance:    | 0          | miles         | NOx                  | CO         | VOC             | SOx        | PM10       | CO2         |          |              |        |
|                                    | Const Days per Period:          | 0          |               | 0.00625339           | 0.00051535 | 0.00011377      | 0.000026   | 3.9844E-05 | 3.10646173  | HDDT     |              |        |
|                                    | Avg Deliveries per Day:         | 0          |               | 0.00046982           | 0.00340025 | 7.8173E-05      | 0.000013   | 2.9202E-06 | 1.02361637  | MDGT     |              |        |
|                                    | Fraction of Deliveries-Diesel:  | 0.95       | HDDT          |                      |            | Daily Emiss     | ions (lbs) |            |             |          |              |        |
|                                    | Fraction of Deliveries-Gas:     | 0.05       | MDGT          | NOx                  | СО         | VOC             | SOx        | PM 10      | CO2         | PM 2.5   |              |        |
|                                    | Total Delivery VMT:             | 1687618    | per Applicant | 0.000                | 0.000      | 0.000           | 0.000      | 0.000      | 0.000       | 0.000    | HDDT         |        |
|                                    | Total Daily VMT-Diesel          | 0          |               | 0.000                | 0.000      | 0.000           | 0.000      | 0.000      | 0.000       | 0.000    | MDGT         |        |
|                                    | Total Daily VMT-Gasoline        | 0          |               |                      | 1          | ΓonsperCon      | st Period  |            |             |          |              |        |
|                                    | Total Period VMT-Diesel         | 1603237.42 |               | 5.013                | 0.413      | 0.091           | 0.021      | 0.032      | 2490.2      | 0.027    | HDDT         |        |
|                                    | Total Period VMT-Gasoline       | 84380.9167 | ,             | 0.020                | 0.143      | 0.003           | 0.001      | 0.000      | 43.2        | 0.000    | MDGT         |        |
|                                    |                                 |            | <i>"</i> `    |                      |            |                 |            |            |             |          |              |        |
|                                    | Construction Site Support Vehic |            | (LDTs)        | Daily Emissions, Ibs |            |                 |            |            |             |          |              |        |
|                                    | Gasoline Vehicle VMT Period:    | 75900      |               | NOx                  | CO         | VOC             | SOx        | PM 10      | CO2         |          |              | PM 2.5 |
|                                    | Avg Daily Gasoline VMT:         | 300        |               |                      |            | 6.9991E-05      | 0.000008   | 5.0718E-06 | 0.6541839   | lbs/vmt* | LDT gasoline |        |
|                                    | Avg Daily Diesel VMT:           | 0          |               | 0.1223               | 1.0778     | 0.0210          | 0.0024     | 0.0015     | 196.2552    | lbs/day  | gasoline     | 0.0010 |
|                                    | Total Phase Const Days:         | 240        |               |                      |            |                 |            |            |             |          |              |        |
|                                    |                                 |            |               |                      |            | Tonsper Co      | nst Period |            |             |          |              |        |
| Ref: EMFAC 2014, SJVAPCD Year 2016 |                                 |            | 0.0155        | 0.1363               | 0.0027     | 0.0003          | 0.0002     | 24.8       | tons/period | gasoline | 0.0001       |        |
| LDT1-gas, MDV-gas, HDDT-dsl        |                                 |            |               |                      |            |                 |            |            |             |          |              |        |
|                                    | See EF data in WSP Support Appe | endix      |               |                      |            |                 |            |            |             |          |              |        |
|                                    |                                 |            |               |                      |            |                 |            |            |             |          |              |        |

### Notes \*\*\*

VMT for delivery/hauling for all vehicles includes: (1) materials deliveries to site, (2) materials removal from site, other VMT as specified below.

Support Vehicle VMT: best estimate at time of filing, 10 LDT (gasoline) at 30 VMT/day

CARB-CEIDARS, Updated Fractions for PM Profiles: PM2.5 = 0.991 of PM10 for Diesel Exhaust, and 0.998 for Gasoline Vehicles.

# CONSTRUCTION PHASE - Worker Travel - Emissions

|                                           |                |           |              |             | LDA-gas          |                     |               |             |        |
|-------------------------------------------|----------------|-----------|--------------|-------------|------------------|---------------------|---------------|-------------|--------|
| Worker Travel to Site                     |                |           |              |             | See EF data ir   | NWSP Support A      | Appendix      |             |        |
| Avg Occupancy/Vehicle:                    | 0              |           |              |             |                  |                     |               |             |        |
| Avg Roundtrip Distance, miles:            | 0.0            |           |              |             | ns Factors (Ibs/ | ,                   |               |             |        |
| $A \vee g #$ of Worker Vehicles, per day: | 0              |           | NOx          | CO          | VOC              | SOx                 | PM10          | CO2         |        |
| Avg Daily Worker VMT:                     | 0              |           | 0.00013058   | 0.001103197 | 2.504E-05        | 0.000007            | 0.000004      | 0.65463696  |        |
| Max # of Worker Vehicles, per day:        | 0              |           |              |             |                  |                     |               |             |        |
| Max Daily Worker VMT:                     | 0              |           |              | Da          | aily Emissions   | s(lbs)              |               |             |        |
| Total Const Days:                         | 240            |           | NOx          | CO          | VOC              | SOx                 | PM10          | CO2         | PM2.5  |
| Total Const Period Worker VMT:            | 7497000        | Avg       | 0.00         | 0.00        | 0.00             | 0.00                | 0.00          | 0.00        | 0.00   |
| VMT data suppli                           | ed by Applican | t.        |              |             |                  |                     |               |             |        |
|                                           |                |           |              | То          | nsperConstl      | Period              |               |             |        |
|                                           |                | Avg       | 0.489        | 4.135       | 0.094            | 0.026               | 0.015         | 2453.9      | 0.000  |
| Worker Travel by Busing from Staging      | Area           |           |              |             |                  |                     |               |             |        |
| Total Bus VMT/Const Period: 0             |                | Bus Round | d Trips/Day: | 0           | max              | Ref: SJVAPCD        | EMFAC 2014    | , Year 2016 |        |
| Avg Bus VMT/Const Day:                    | 0              | Bus Occup | bancy/Trip:  | 0           |                  | All other buses-DSL |               |             |        |
| Max Bus VMT/Const Day:                    | 0              |           |              |             |                  | See EF data in \    | WSP Support A | Appendix    |        |
|                                           |                |           |              | Emissio     | ns Factors (Ibs  | (//MT)              |               |             |        |
| # buses supplied by Applicant.            |                |           | NOx          | CO          | VOC              | SOx                 | PM10          | CO2         |        |
|                                           |                |           | 0.012001     | 0.001203    | 0.000458         | 0.000026            | 0.00015       | 2.734838    |        |
|                                           |                |           |              |             |                  |                     |               |             |        |
|                                           |                |           |              | Da          | aily Emissions   | s(lbs)              |               |             |        |
|                                           |                |           | NOx          | СО          | VOC              | SOx                 | PM 10         | CO2         | PM 2.5 |
|                                           |                | Avg       | 0.00         | 0.00        | 0.00             | 0.00                | 0.00          | 0.00        | 0.00   |
|                                           |                | Max       | 0.00         | 0.00        | 0.00             | 0.00                | 0.00          | 0.00        | 0.00   |
|                                           |                |           |              |             | Tonsper Cor      | nst Period          |               |             |        |
|                                           |                | Avg       | 0.000        | 0.000       | 0.000            | 0.000               | 0.000         | 0.000       | 0.000  |

Ref: SJVAPCD EMFAC 2014, Year 2020

### **CONSTRUCTION PHASE - Trackout Emissions**

| Paved Road Length (miles):       | 0.1          |                 |                          |                 |             |  |  |
|----------------------------------|--------------|-----------------|--------------------------|-----------------|-------------|--|--|
| Daily # of Vehicles:             | 74           |                 |                          |                 |             |  |  |
| Avg Vehicle Weight (tons):       | 6.8          |                 | PM 10                    | PM 2.5*         |             |  |  |
| Total Unadjusted VMT/day         | 7.4          |                 | 0.361                    |                 |             |  |  |
| Particle Size Multipliers        | PM10         |                 | 1.924                    |                 |             |  |  |
| Ib/VMT                           | 0.023        |                 | 0.002                    | 0.0004          | Ib/VMT      |  |  |
| C factor, Ib/VMT                 | 0.00047      |                 | 0.129                    | 0.0217          | lbs/day     |  |  |
| Road Sfc Silt Loading (g/m^2):   | 0.56         | local X 2       | 0.001                    | 0.0002          | tons/month  |  |  |
| # of Active Trackout Points:     | 1            | * *             | 0.03                     | 0.0044          | tons/period |  |  |
| Added Trackout Miles:            | PM10         |                 |                          |                 |             |  |  |
| Trackout VMT/day:                | 44           |                 | Default Silt Load Valu   | les for Paved I | Road Types  |  |  |
| Final Adjusted VMT/day           | 52           |                 | Freeway                  | 0.02 g/m2       |             |  |  |
| Final Adjusted VMT/month         | 1140         |                 | Arterial                 | 0.036 g/m2      |             |  |  |
| Final Adjusted VMT/period        | 20764        |                 | Collector                | 0.036 g/m2      |             |  |  |
| Construction days/month:         | 22           |                 | Local                    | 0.28 g/m2       |             |  |  |
| Adj. Construction months/period: | 18.22        |                 | Rural                    | 1.6 g/m2        |             |  |  |
| Control Applied to Trackout:     | Gravel entra | nce, metal clea | ning grates, water washi | ng, sweeping    |             |  |  |
| Control Efficiency, %            | 84           | 0.84            | Release Factor =         | 0.16            |             |  |  |

\* PM2.5 fraction of PM10 assumed to be 0.169 (CARB CEIDARS updated fraction values) for paved roads.

\*\* 1 controlled ingress/egress point is planned for site construction

EPA, AP-42, Section 13.2.1, Proposed revisions dated 9/2008.

Use silt loading factor from default values for road type if no site specific data is available.

Trackout effects approximately 0.05 mi. of roadway arriving and departing from the site access point.

Plant access road is already paved. Entrance will be gravelled with metal grates for take out control.

Vehicle count = delivery trucks plus site support trucks (see Unpaved Onsite tab)

Worker vehicles not counted for trackout, they will park on the site perimeter.

SGF 7

2025

|                    | Tons/Per | iod   |      |      |       |         |       |        |
|--------------------|----------|-------|------|------|-------|---------|-------|--------|
|                    |          |       |      |      |       | F       | −ug   | Fug    |
|                    | NOx      | CO    | VOC  | SOx  | PM 10 | CO2     | PM 10 | PM 2.5 |
| on-off site travel | 0.92     | 2.30  | 0.07 | 0.03 | 0.02  | 2656    | 4.92  | 0.87   |
| on-site equipment  | 14.45    | 11.68 | 2.52 | 0.04 | 0.64  | 3714    |       |        |
| Total              | 15.36    | 13.99 | 2.59 | 0.07 | 0.66  | 6370    | 4.92  | 0.87   |
| Months:            | 15       |       |      |      |       |         |       |        |
| Max Year Months:   | 12       |       |      |      |       |         |       |        |
| Total per Year:    | 12.29    | 11.19 | 2.07 | 0.05 | 0.53  | 5095.83 | 3.94  | 0.69   |

# CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

# Project: WSP Main Site Construction-SGF 7

# Assumptions:

1. The average engines employed in construction equipment use consumes fuel at a rate of:

Ref: EPA, NR-009b Publication, November 2002.

Ref: Sacramento County APCD Const. Program Data, V. 6.0.3, 3/2007.

Ref: EPA, NR-009c Publication, EPA 420-P-04-009, April 2004.

Ref: Niland Energy Project, IID, AFC Vol 2, App A.

Ref: South Coast AQMD PR XXI, Draft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03. The above noted references present fuel consumption values which range from 0.050 to 0.064 gal/hp-hr for diesel engines used in construction related equipment. The value of 0.060 gal/hp-hr was chosen as a reasonable upper mid-range value for construction diesel emissions calculations. For gasoline the mid-range value from SCAQMD of 0.11 gal/hp-hr was used.

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:                      | 21.5<br>8<br>1.79 | months<br>hrs/day<br>years | Construction Totals: | 217.67442<br>4680<br>585                                         | hrs/month<br>hrs/const period<br>days/const period |  |
|------------------------------------------------|-------------------|----------------------------|----------------------|------------------------------------------------------------------|----------------------------------------------------|--|
| 5. Anticipated Construction Start Year:        |                   | 2023                       | 7.                   | N2O EF dies<br>N2O EF gas                                        | oline, lb/gal: 0.000164                            |  |
| 6. Maximum anticipated equipment use month is: |                   | n/a                        |                      | CARB, Mandatory GHG Reporting Regu<br>Table 4, Appendix A, 2007. |                                                    |  |

Equipment types and use rates supplied by the Applicant.

|                               | Weighted<br>Average | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site | Total   | Total Hrs<br>per Const | Total<br>HP-Hrs |
|-------------------------------|---------------------|------------------------|-----------------|----------------------|---------|------------------------|-----------------|
| Equipment Category**          | HP                  | Project                | Hrs/day         | (each)               | Hrs/Day | Period                 | Period          |
| Aerial Lifts                  | 63                  | 1                      | 6               | 94                   | 6       | 564                    | 35532           |
| Air Compressors               | 78                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Bore-Drill Rigs               | 206                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cement Mixers                 | 9                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Concrete/Industrial Saws      | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cranes                        | 226                 | 1                      | 2               | 94                   | 2       | 188                    | 42488           |
| Crawler Tractors/Dozers       | 208                 | 3                      | 7               | 210                  | 21      | 4410                   | 917280          |
| Crushing/Processing Eq.       | 85                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Dumpers/Tenders/Water Trucks  | 16                  | 7                      | 7               | 192                  | 49      | 9408                   | 150528          |
| Excavators                    | 163                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Forklifts                     | 89                  | 8                      | 6               | 200                  | 48      | 9600                   | 854400          |
| Generator Sets                | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Graders                       | 175                 | 5                      | 7               | 108                  | 35      | 3780                   | 661500          |
| Off-Highway Tractors          | 123                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Off-Highway Trucks            | 400                 | 12                     | 7               | 220                  | 84      | 18480                  | 7392000         |
| Other Diesel Construction Eq. | 172                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other General Industrial Eq.  | 88                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other Material Handling Eq.   | 167                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pavers                        | 126                 | 1                      | 4               | 28                   | 4       | 112                    | 14112           |
| Paving Eq. Other              | 131                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Plate Compactors              | 8                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pressure Washers              | 13                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pumps                         | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Roller Compactors             | 81                  | 1                      | 7               | 42                   | 7       | 294                    | 23814           |
| Rough Terrain Forklifts       | 100                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tired Dozers           | 255                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tires Loaders          | 200                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Scrapers                      | 362                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Signal Boards                 | 6                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Skid Steer Loaders            | 65                  | 1                      | 7               | 188                  | 7       | 1316                   | 85540           |
| Surfacing Eq.                 | 254                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Sweepers/Scrubbers            | 64                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Tractors                      | 98                  | 2                      | 7               | 245                  | 14      | 3430                   | 336140          |
| Front End Loaders (single     | 98                  | 1                      | 7               | 83                   | 7       | 581                    | 56938           |
| Backhoes category)            | 98                  | 1                      | 4               | 158                  | 4       | 632                    | 61936           |
| Trenchers                     | 81                  | 10                     | 4               | 235                  | 40      | 9400                   | 761400          |
| Welders                       | 46                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Gasoline Const Eq.            | 175                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |

| ** diesel | equipment   | unless | otherwise | specified. |
|-----------|-------------|--------|-----------|------------|
|           | e quip mene |        | 000000000 | speeniea.  |

| Const Period Diesel Hp-Hrs =     | 11393608 |      |
|----------------------------------|----------|------|
| Const Period Gasoline Hp-Hrs =   | 0        |      |
| Const Period Diesel Fuel Use =   | 683616   | gals |
| Const Period Gasoline Fuel Use = | 0        | gals |

gal/hp-hr

gal/hp-hr

0.06

0.11

diesel

gasoline

Offroad equipment emissions factors derived SCAQMD Off Road database for 2020.

The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              |           |        | 2020 Equip | oment Emissi | ons Factors |          |         |  |  |  |  |  |  |
|----------------------------------------------|-----------|--------|------------|--------------|-------------|----------|---------|--|--|--|--|--|--|
| Equip.                                       | lbs/hr    | lbs/hr | lbs/hr     | lbs/hr       | lbs/hr      | lbs/hr   | lbs/hr  |  |  |  |  |  |  |
| Туре                                         | VOC (ROG) | CO     | NOx        | SOx          | PM10        | CO2      | CH4     |  |  |  |  |  |  |
| Aerial Lifts                                 | 0.0261    | 0.1696 | 0.1866     | 0.0004       | 0.0092      | 34.7217  | 0.0024  |  |  |  |  |  |  |
| Air Compressors                              | 0.0483    | 0.3077 | 0.3255     | 0.0007       | 0.0185      | 63.6073  | 0.0044  |  |  |  |  |  |  |
| Bore-Drill Rigs                              | 0.0480    | 0.5008 | 0.3439     | 0.0017       | 0.0062      | 164.8622 | 0.0043  |  |  |  |  |  |  |
| Cement Mixers                                | 0.0086    | 0.0415 | 0.0536     | 0.0001       | 0.0021      | 7.2481   | 0.0008  |  |  |  |  |  |  |
| Concrete/Industrial Saws                     | 0.0484    | 0.3783 | 0.3410     | 0.0007       | 0.0196      | 58.4636  | 0.0044  |  |  |  |  |  |  |
| Cranes                                       | 0.0898    | 0.3917 | 0.6610     | 0.0014       | 0.0256      | 128.6305 | 0.0081  |  |  |  |  |  |  |
| Crawler Tractors/Dozers                      | 0.1049    | 0.5260 | 0.6772     | 0.0013       | 0.0378      | 114.0177 | 0.0095  |  |  |  |  |  |  |
| Crushing/Processing Eq.                      | 0.0934    | 0.6247 | 0.5983     | 0.0015       | 0.0310      | 132.3083 | 0.0084  |  |  |  |  |  |  |
| Dumpers/Tenders                              | 0.0092    | 0.0314 | 0.0582     | 0.0001       | 0.0022      | 7.6244   | 0.0008  |  |  |  |  |  |  |
| Excavators                                   | 0.0733    | 0.5124 | 0.4042     | 0.0013       | 0.0184      | 119.5795 | 0.0066  |  |  |  |  |  |  |
| Forklifts                                    | 0.0320    | 0.2160 | 0.1691     | 0.0006       | 0.0070      | 54.3958  | 0.0029  |  |  |  |  |  |  |
| Generator Sets                               | 0.0395    | 0.2732 | 0.3232     | 0.0007       | 0.0150      | 60.9927  | 0.0036  |  |  |  |  |  |  |
| Graders                                      | 0.0919    | 0.5765 | 0.5823     | 0.0015       | 0.0280      | 132.7430 | 0.0083  |  |  |  |  |  |  |
| Off-Highway Tractors                         | 0.1470    | 0.6517 | 1.0657     | 0.0017       | 0.0497      | 151.4031 | 0.0133  |  |  |  |  |  |  |
| Off-Highway Trucks                           | 0.1443    | 0.5514 | 0.8306     | 0.0027       | 0.0280      | 260.0871 | 0.0130  |  |  |  |  |  |  |
| Other Diesel Construction Eq.                | 0.0563    | 0.3508 | 0.3519     | 0.0013       | 0.0139      | 122.4967 | 0.0051  |  |  |  |  |  |  |
| Other General Industrial Eq.                 | 0.0983    | 0.4517 | 0.6661     | 0.0016       | 0.0262      | 152.2399 | 0.0089  |  |  |  |  |  |  |
| Other Material Handling Eq.                  | 0.0924    | 0.4429 | 0.6500     | 0.0015       | 0.0252      | 141.1941 | 0.0083  |  |  |  |  |  |  |
| Pavers                                       | 0.0989    | 0.4920 | 0.5450     | 0.0009       | 0.0355      | 77.9332  | 0.0089  |  |  |  |  |  |  |
| Paving Eq. Other                             | 0.0757    | 0.4084 | 0.4807     | 0.0008       | 0.0315      | 68.9391  | 0.0068  |  |  |  |  |  |  |
| Plate Compactors                             | 0.0050    | 0.0263 | 0.0314     | 0.0001       | 0.0012      | 4.3138   | 0.0005  |  |  |  |  |  |  |
| Pressure Washers                             | 0.0085    | 0.0549 | 0.0650     | 0.0001       | 0.0030      | 9.4135   | 0.0008  |  |  |  |  |  |  |
| Pumps                                        | 0.0376    | 0.2674 | 0.2854     | 0.0006       | 0.0147      | 49.6067  | 0.0034  |  |  |  |  |  |  |
| Roller Compactors                            | 0.0584    | 0.3837 | 0.3793     | 0.0008       | 0.0232      | 67.0402  | 0.0053  |  |  |  |  |  |  |
| Rough Terrain Forklifts                      | 0.0533    | 0.4464 | 0.3494     | 0.0008       | 0.0201      | 70.2808  | 0.0048  |  |  |  |  |  |  |
| Rubber Tired Dozers                          | 0.2118    | 0.8006 | 1.5773     | 0.0025       | 0.0630      | 239.0842 | 0.0191  |  |  |  |  |  |  |
| Rubber Tires Loaders                         | 0.0753    | 0.4406 | 0.4747     | 0.0012       | 0.0235      | 108.6109 | 0.0068  |  |  |  |  |  |  |
| Scrapers                                     | 0.1914    | 0.7938 | 1.3434     | 0.0027       | 0.0541      | 262.4852 | 0.0173  |  |  |  |  |  |  |
| Signal Boards                                | 0.0129    | 0.0912 | 0.0912     | 0.0002       | 0.0042      | 16.6983  | 0.0012  |  |  |  |  |  |  |
| Skid Steer Loaders                           | 0.0222    | 0.2125 | 0.1614     | 0.0004       | 0.0050      | 30.2770  | 0.0020  |  |  |  |  |  |  |
| Surfacing Eq.                                | 0.0823    | 0.3953 | 0.6593     | 0.0017       | 0.0239      | 165.9635 | 0.0074  |  |  |  |  |  |  |
| Sweepers/Scrubbers                           | 0.0584    | 0.4916 | 0.3563     | 0.0009       | 0.0183      | 78.5433  | 0.0053  |  |  |  |  |  |  |
| Tractors                                     | 0.0436    | 0.3616 | 0.2744     | 0.0008       | 0.0134      | 66.7988  | 0.0039  |  |  |  |  |  |  |
| Front End Loaders                            | 0.0436    | 0.3616 | 0.2744     | 0.0008       | 0.0134      | 66.7988  | 0.0039  |  |  |  |  |  |  |
| Backhoes                                     | 0.0436    | 0.3616 | 0.2744     | 0.0008       | 0.0134      | 66.7988  | 0.0039  |  |  |  |  |  |  |
| Trenchers                                    | 0.0933    | 0.4270 | 0.4575     | 0.0007       | 0.0336      | 58.7130  | 0.0084  |  |  |  |  |  |  |
| Welders                                      | 0.0310    | 0.1816 | 0.1735     | 0.0003       | 0.0102      | 25.6027  | 0.0028  |  |  |  |  |  |  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771    | 0.3855 | 1.08       | 0.00014      | 0.1542      | 14.1565  | 0.00037 |  |  |  |  |  |  |
| (gasoline EFs: EPA OMS-AMD Report NR-009A    |           |        |            |              | 2016)       |          |         |  |  |  |  |  |  |

(gasoline EFs: EPA OMS-AMD Report NR-009A, 2-13-98, and SCAQMD EMFAC 2007 CEQA Tables, 2016.)

### Construction Period Emissions, lbs

| Туре                          |      |       |       |       |      |         |                                                                                                                               |       |
|-------------------------------|------|-------|-------|-------|------|---------|-------------------------------------------------------------------------------------------------------------------------------|-------|
| - <i>v</i> F *                | VOC  | СО    | NOx   | SOx   | PM10 | CO2     | CH4                                                                                                                           |       |
| Aerial Lifts                  | 15   | 96    | 105   | 0     | 5    | 19583   | 1                                                                                                                             |       |
| Air Compressors               | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Bore-Drill Rigs               | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Cement Mixers                 | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Concrete/Industrial Saws      | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Cranes                        | 17   | 74    | 124   | 0     | 5    | 24183   | 2                                                                                                                             |       |
| Crawler Tractors/Dozers       | 463  | 2320  | 2986  | 6     | 167  | 502818  | 42                                                                                                                            |       |
| Crushing/Processing Eq.       | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Dumpers/Tenders               | 87   | 295   | 548   | 1     | 21   | 71730   | 8                                                                                                                             |       |
| Excavators                    | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Forklifts                     | 307  | 2074  | 1623  | 6     | 67   | 522200  | 28                                                                                                                            |       |
| Generator Sets                | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Graders                       | 347  | 2179  | 2201  | 6     | 106  | 501769  | 31                                                                                                                            |       |
| Off-Highway Tractors          | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Off-Highway Trucks            | 2667 | 10190 | 15349 | 50    | 517  | 4806410 | 240                                                                                                                           |       |
| Other Diesel Construction Eq. | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Other General Industrial Eq.  | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Other Material Handling Eq.   | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Pavers                        | 11   | 55    | 61    | 0     | 4    | 8729    | 1                                                                                                                             |       |
| Paving Eq. Other              | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Plate Compactors              | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Pressure Washers              | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Pumps                         | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Roller Compactors             | 17   | 113   | 112   | 0     | 7    | 19710   | 2                                                                                                                             |       |
| Rough Terrain Forklifts       | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Rubber Tired Dozers           | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Rubber Tires Loaders          | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Scrapers                      | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Signal Boards                 | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Skid Steer Loaders            | 29   | 280   | 212   | 1     | 7    | 39845   | 3                                                                                                                             |       |
| Surfacing Eq.                 | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Sweepers/Scrubbers            | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Tractors                      | 150  | 1240  | 941   | 3     | 46   | 229120  | 13                                                                                                                            |       |
| Front End Loaders             | 25   | 210   | 159   | 0     | 8    | 38810   | 2                                                                                                                             |       |
| Backhoes                      | 28   | 229   | 173   | 1     | 8    | 42217   | 2                                                                                                                             |       |
| Trenchers                     | 877  | 4014  | 4301  | 7     | 316  | 551902  | 79                                                                                                                            |       |
| Welders                       | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Gasoline Const Eq.            | 0    | 0     | 0     | 0     | 0    | 0       | 0                                                                                                                             |       |
| Totals                        | VOC  | СО    | NOx   | SOx   | PM10 | PM2.5   | CO2                                                                                                                           | CH    |
| lbs per const. period         | 5039 | 23367 | 28897 | 80    | 1283 | 1271.76 | 7379024                                                                                                                       | 454   |
| tons per const. period        | 2.5  | 11.7  | 14.4  | 0.040 | 0.64 | 0.64    | 3689.51                                                                                                                       | 0.2   |
| Average lbs/day =             | 8.6  | 39.9  | 49.4  | 0.136 | 2.19 | 2.17    | 12613.72                                                                                                                      | 0.7   |
| Normalized TPY =              | 1.4  | 6.5   | 8.1   | 0.0   | 0.4  | 0.4     | 2059.3                                                                                                                        | 0.1   |
|                               |      |       |       |       |      |         | $\begin{array}{c} 0\\ 0\\ 0\\ 2\\ 42\\ 0\\ 8\\ 0\\ 28\\ 0\\ 31\\ 0\\ 240\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$ | ariod |
|                               |      |       |       |       |      |         | CO2e, $tons/pe$                                                                                                               | 1100  |

 CO2e, tons/period
 3713.8

 CO2e, tons/yr:
 2072.8

N2O 125 0.06 0.21 0.035

Other Assumptions and References:

Equip.

 Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08. Optimum trench construction progress rate is 80m (260ft) per day. Non-optimum trench construction progress rate is 30m (100 ft) per day. An average progress of 180 ft/day is used where applicable.

2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness.

A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable.

The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr.

- Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001.
- 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.
- 4. Construction schedule note: applicant data indicates a construction work day period of 8 hours
  - The equipment use rates provided by the applicant are consistent with an 8 hour workday.
- 5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.
- 6. CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

| CONSTRUCTI         |                |                      |                    |                 |                        |                |                 |        |
|--------------------|----------------|----------------------|--------------------|-----------------|------------------------|----------------|-----------------|--------|
| MRILevel 2 An      |                | -                    |                    |                 | Acres                  | 1109           |                 |        |
|                    |                | DisturbanceActi      |                    |                 |                        | 110.9          |                 |        |
|                    |                | uction Disturbance   |                    | day of this pl  | nase:                  | 8.3            | note (10)       |        |
|                    |                | ncontrolled, tons/a  |                    |                 |                        | 0.12           |                 |        |
| PM2.5 fraction o   | fPM10 (per     | CARB CEIDARS         | SProfiles):        |                 |                        | 0.21           |                 |        |
| Activity Levels:   |                | Hrs/Day:             |                    |                 |                        | 8              |                 |        |
|                    |                | Days/Wk:             |                    |                 |                        | 5              |                 |        |
|                    |                | Days/Month:          | Applicant Data     |                 |                        | 22             |                 |        |
|                    | Phase Cons     | t Period, Months:    |                    |                 |                        | 15             | 1.25            | years  |
|                    | Phase Co       | nst Period, Days:    |                    |                 |                        | 330            |                 |        |
| Wet Season Adj     | ustment:       | (Per A P-42, Sec     | ction 13.2.2, Figu | ire 13.2.2-1, 1 | 2/03 or CalEEMod       | , Appendix D   | Table 1.1.)     |        |
| Ν                  | √lean#days/    | yearwithrain>=0      | 0.01 inch:         |                 |                        | 40             |                 |        |
| Ν                  | √lean#montl    | hs/yr with rain >=   | 0.01 inch:         |                 |                        | 1.33           |                 |        |
| A                  | Adjusted Con   | st Period, Months    | :                  |                 |                        | 13.33          |                 |        |
| A                  | Adjusted Con   | st Period, Days:     |                    |                 |                        | 280            |                 |        |
|                    |                |                      |                    |                 |                        |                |                 |        |
| Controlsfor Fu     | gitive Dust:   |                      | Pro                | oposed wateri   | ng cycle:              | 3              | times per day   |        |
|                    |                |                      |                    |                 |                        |                |                 |        |
| 3 watering cycles  | s/8 hour cons  | truction shift yield | ls a 68% reductio  | n, use 68% fo   | or non-desert sites. ( | 11)(12)        |                 |        |
| Speed control of   | onsite const t | traffic to <15 mph   | yields a 40-70%    | reduction (us   | e 50% control as co    | onservativefor | site). (11)(12) |        |
|                    |                | Calculated %         | control based on   | mitigationspr   | oposed:                | 84             | % control       |        |
|                    |                | Conservative co      | ontrol % used for  | emissions est   | imates:                | 84             | % control       |        |
|                    |                |                      |                    |                 |                        | 0.16           | releasefraction |        |
| Emissions: Cont    | trolled        | PM10                 | PM2.5              |                 |                        |                |                 |        |
| te                 | ons/month      | 0.160                | 0.034              |                 |                        |                |                 |        |
| te                 | ons/period     | 2.129                | 0.447              |                 |                        |                |                 |        |
| Max II             | bs/day         | 14.518               | 3.049              |                 |                        |                |                 |        |
|                    |                |                      |                    |                 |                        |                |                 |        |
| Soil Handling E    | •              | ut and Fill): (2)    |                    |                 |                        |                |                 |        |
| Total cu.yds of so |                |                      | 0                  |                 | Mean annual wir        |                | : (8)           | 8.03   |
| Total tons of soil |                |                      | 0.0                |                 | Avg. Soil moistu       |                |                 | 5      |
| Total days soil ha | andled:        |                      | 280                |                 | Avg. Soil density      | •              |                 | 1.3    |
| Tons soil/day:     |                |                      | 0                  |                 | k factor for PM1       | 0:             |                 | 0.35   |
| Control Eff, wate  | -              |                      | 80                 |                 | Number of Drop         | s per ton:     |                 | 4      |
|                    | Rele           | ase Fraction:        | 0.2                |                 | Calc 1                 | wind           |                 | 1.851  |
|                    |                |                      |                    |                 | Calc 2                 | moisture       |                 | 3.607  |
| Emissions:         | PM10           | PM2.5                |                    |                 | Calc 3                 | int            |                 | 0.513  |
| tons/period        | 0.000          | 0.000                |                    |                 | Calc 4                 | PM10           | lb/ton          | 0.0006 |
| tons/month         | 0.000          | 0.000                |                    |                 | PM2.5 fraction of      | fPM10:         |                 | 0.210  |
| max Ibs/day        | 0.000          | 0.000                |                    |                 |                        |                |                 |        |
|                    |                |                      |                    |                 |                        |                |                 |        |
|                    |                | EmissionsTota        |                    | PM 10           | PM 2.5                 |                |                 |        |
|                    |                |                      | tons/period        | 2.129           | 0.447                  |                |                 |        |
|                    |                |                      |                    |                 |                        |                |                 |        |

### Methodology References:

(1) MRI Report, South Coast AQMD Project No. 95040, March 1996, Level 2 Analysis Procedure.

MRI Report uncontrolled factor of 0.11 tons/acre/month is based on 168 hours per month of const activity.

For an activity rate of ~180 hrs/month, the adjusted EF would be 0.12 tons/acre/month (uncontrolled).

(2) Soil Handling (Cut and Fill), EPA, AP-42, Section 13.2.4., 11/06.

(3) URBEMIS, Version 9.2.4, User's Manual Appendix A, page A-6.

(4) CARB Area Source Methodology, Section 7.7, 9/02.

(5) WRAP Fugitive Dust Handbook, 9/06.

(6) USEPA, AP-42, Section 13.2.3, 2/10.

(7) Estimating PM Emissions from Construction Operations, USEPA, MRI, 9/99.

(8) Wind speed data for Lemoore met station. Annual avg wind speed = 8.03 mph, % calms = 3.44%.

(9) Soil Moisture; 5% assumed avg value

(10) adjusted applicant value based on 7.5% of total acreage disturbed on any given day

(11) SCAQMD CEQA Handbook 1993.

(12) SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres, Fugitive Dust Mitigations, February 2005.

# OFFSITE PAVED ROAD FUGITIVE DUST EMISSIONS

(associated with delivery truck and worker vehicle traffic on I-5 and plant access road)

| Average mi                       | Average mileage for construction related vehicles: |                           |                           | NA       | miles, roundtrip distance*** |                                                                                 |
|----------------------------------|----------------------------------------------------|---------------------------|---------------------------|----------|------------------------------|---------------------------------------------------------------------------------|
| Avg weight                       | of vehicular eo                                    | quipment or               | n road:                   |          | 4.1                          | tons (range 2 - 42 tons)                                                        |
| Road surfac                      | ce silt loading fa                                 | actor:                    |                           |          | 0.015                        | g/m2 (range 0.03 - 400 g/m2)<br>Limited Access Freeway >10,000 ADT <b>(I-5)</b> |
| Particlesiz                      | e multiplier fac                                   | tors:                     | Р                         | M10      | 0.0022                       | Ib/VMT                                                                          |
|                                  |                                                    |                           |                           | M2.5     | 0.00054                      | Ib/VMT                                                                          |
|                                  |                                                    |                           |                           |          |                              |                                                                                 |
| C factors (brake and tire wear): |                                                    |                           | M10                       | 0.00047  | Ib/VMT                       |                                                                                 |
|                                  |                                                    |                           | P                         | M2.5     | 0.00036                      | Ib/VMT                                                                          |
|                                  |                                                    |                           |                           |          |                              |                                                                                 |
| Avg vehicle speed on road:       |                                                    |                           |                           | 65       | mph                          |                                                                                 |
|                                  |                                                    |                           |                           |          |                              |                                                                                 |
| Avg. Numb                        | per of vehicles p                                  | er day:                   |                           |          | 195                          |                                                                                 |
|                                  |                                                    |                           |                           |          |                              | calculated per Applicant da                                                     |
| Avg. Numb                        | er of work days                                    | s per month:              | :                         |          | 22                           | VMT/period: 5974193.5                                                           |
|                                  |                                                    | T                         | otal vehicles per         | r month: | 4290                         |                                                                                 |
| Number of                        | work months:                                       |                           |                           |          | 23.56                        | adjusted for precip events                                                      |
|                                  |                                                    | Total veh                 | nicles per const          | period:  | 101072.4                     |                                                                                 |
|                                  | Calc 1<br>Calc 2                                   | PM10<br>0.022<br>4.217    |                           |          |                              |                                                                                 |
|                                  | Calc 3                                             | 0.0007                    | Ib/VMT                    |          |                              |                                                                                 |
|                                  | Emissions<br>Ibs/period<br>tons/period             | PM 10<br>4021.22<br>2.011 | PM 2.5<br>679.59<br>0.340 |          |                              |                                                                                 |

EPA, AP-42, Section 13.2.1, March 2006, updated 9/2008.

PM2.5 fraction of PM10 per CARB CEIDARs is 0.169

\*\*\* Note: avg roundtrip distance traveled by delivery or worker vehicles on freeways (I-5) and other State Routes in the project area.

Vehicles per day: worker + deliveries+staff support vehicles (averages)

# ONSITE UNPAVED ROAD FUGITIVE DUST

| Length of Unpaved Roads                                                                                                                             | on site:                                          | 0.1                                                | miles*                         | miles*                                                   |                           |                           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|--------------------------------|----------------------------------------------------------|---------------------------|---------------------------|--|--|
| Avg weight of construction                                                                                                                          | vehiculareq                                       | uipment on road:                                   | 4.1                            | tons (range 2 - 42 tons)                                 |                           |                           |  |  |
| Road surface silt content:<br>Road surface material mois                                                                                            | sture content:                                    |                                                    | 8.5<br>5                       | % (range 1.8 - 35%)<br>% (range 0.03 - 13%)              |                           |                           |  |  |
| Particle size multiplier fact                                                                                                                       | ors:                                              | PM10<br>PM2.5                                      | k<br>1.5<br>0.15               | a<br>0.9<br>0.9                                          | b<br>0.45<br>0.45         |                           |  |  |
| C factors (brake and tire wear): PM10<br>PM2.5                                                                                                      |                                                   |                                                    | 0.00047<br>0.00036             | Ib/VMT<br>Ib/VMT                                         |                           |                           |  |  |
| Avg construction vehicle sp                                                                                                                         | 5                                                 | mph (range 5                                       | mph (range 5-55 mph)           |                                                          |                           |                           |  |  |
| Avg number of construction                                                                                                                          | n vehicles pe                                     | r day:                                             | 74                             | * *                                                      |                           |                           |  |  |
| Number of construction work days per month:<br>Total vehicles per month:<br>Number of construction work months:<br>Total vehicles per const period: |                                                   |                                                    | 22<br>1628<br>23.56<br>59357.1 | VMT/period: 5935.71<br>adjusted for precipitation events |                           |                           |  |  |
| Control reduction due to watering, speed control, etc. =<br>Release Fraction =                                                                      |                                                   | 80<br>0.8<br>0.2                                   |                                |                                                          |                           |                           |  |  |
| Calc 1<br>Calc 2<br>Calc 3<br>Calc 4<br>Controlled Ib/VMT                                                                                           | PM10<br>0.733<br>1.151<br>1.266<br>1.266<br>0.253 | PM2.5<br>0.733<br>1.151<br>0.127<br>0.127<br>0.025 |                                | Emissions<br>Ibs/period<br>tons/period                   | PM 10<br>1503.20<br>0.752 | PM 2.5<br>150.69<br>0.075 |  |  |

EPA, AP-42, Section 13.2.2, March 2006

Soil Moisture; 5% avg

Soil silt content: 8.5% per AP-42 for construction site scraper routes

\*\* const equipment plus site support pickups plus

#### CONSTRUCTION PHASE - Truck Hauling/Delivery and Site Support Vehicle Emissions All Phases

| All Phases                                                                                                                                                                                                                                                                                                                                                                                  |              |               |                      |            |                 |            |            |            |             |              |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|----------------------|------------|-----------------|------------|------------|------------|-------------|--------------|--------|
| Delivery/Hauling Vehicle Use Ra                                                                                                                                                                                                                                                                                                                                                             | ites         |               |                      | Emissi     | ons Factors (Ib | s/vmt)     |            |            |             |              |        |
| Delivery Roundtrip Distance:                                                                                                                                                                                                                                                                                                                                                                | 0            | miles         | NOx                  | CO         | VOC             | SOx        | PM10       | CO2        |             |              |        |
| Const Days per Period:                                                                                                                                                                                                                                                                                                                                                                      | 0            |               | 0.00133459           | 0.00037027 | 6.2834E-05      | 0.000025   | 1.0747E-05 | 2.91617689 | HDDT        |              |        |
| Avg Deliveries per Day:                                                                                                                                                                                                                                                                                                                                                                     | 0            |               | 0.00026191           | 0.00201574 | 3.9247E-05      | 0.000011   | 2.7302E-06 | 0.8745735  | MDGT        |              |        |
| Fraction of Deliveries-Diesel:                                                                                                                                                                                                                                                                                                                                                              | 0.95         | HDDT          |                      |            | Daily Emiss     | ions (lbs) |            |            |             |              |        |
| Fraction of Deliveries-Gas:                                                                                                                                                                                                                                                                                                                                                                 | 0.05         | MDGT          | NOx                  | СО         | VOC             | SOx        | PM 10      | CO2        | PM 2.5      |              |        |
| Total Delivery VMT:                                                                                                                                                                                                                                                                                                                                                                         | 1093494      | per Applicant | 0.000                | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | HDDT         |        |
| Total Daily VMT-Diesel                                                                                                                                                                                                                                                                                                                                                                      | 0            |               | 0.000                | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | MDGT         |        |
| Total Daily VMT-Gasoline                                                                                                                                                                                                                                                                                                                                                                    | 0            |               |                      | ٦          | Fonsper Con     | st Period  |            |            |             |              |        |
| Total Period VMT-Diesel                                                                                                                                                                                                                                                                                                                                                                     | 1038818.83   | 3             | 0.693                | 0.192      | 0.033           | 0.013      | 0.006      | 1514.7     | 0.005       | HDDT         |        |
| Total Period VMT-Gasoline                                                                                                                                                                                                                                                                                                                                                                   | 54674.675    |               | 0.007                | 0.055      | 0.001           | 0.000      | 0.000      | 23.9       | 0.000       | MDGT         |        |
| Total Daily VMT-Gasoline         0         Tons per Const Period           Total Period VMT-Diesel         1038818.83         0.693         0.192         0.033         0.013         0.006         1514.7         0.005         HDDT           Total Period VMT-Gasoline         54674.675         0.007         0.055         0.001         0.000         23.9         0.000         MDGT |              |               |                      |            |                 |            |            |            |             |              |        |
| Construction Site Support Vehic                                                                                                                                                                                                                                                                                                                                                             | le Use Rates | (LDTs)        | Daily Emissions, Ibs |            |                 |            |            |            |             |              |        |
| Gasoline Vehicle VMT Period:                                                                                                                                                                                                                                                                                                                                                                | 75900        |               | NOx                  | СО         | VOC             | SOx        | PM 10      | CO2        |             |              | PM 2.5 |
| Avg Daily Gasoline VMT:                                                                                                                                                                                                                                                                                                                                                                     | 300          |               | 0.0002232            | 0.00204313 | 3.6203E-05      | 0.000007   | 3.782E-06  | 0.55087942 |             | LDT gasoline |        |
| Avg Daily Diesel VMT:                                                                                                                                                                                                                                                                                                                                                                       | 0            |               | 0.0670               | 0.6129     | 0.0109          | 0.0021     | 0.0011     | 165.2638   | lbs/day     | gasoline     | 0.0007 |
| Total Phase Const Days:                                                                                                                                                                                                                                                                                                                                                                     | 240          |               |                      |            |                 |            |            |            |             |              |        |
|                                                                                                                                                                                                                                                                                                                                                                                             |              |               |                      |            | Tonsper Co      | nst Period |            |            |             |              |        |
| Ref: EMFAC 2014, SJV APCD Ye                                                                                                                                                                                                                                                                                                                                                                | ar 2023      |               | 0.0085               | 0.0775     | 0.0014          | 0.0003     | 0.0001     | 20.9       | tons/period | gasoline     | 0.0001 |
| LDT1-gas, MDV-gas, HDDT-dsl                                                                                                                                                                                                                                                                                                                                                                 |              |               |                      |            |                 |            |            |            |             |              |        |
| See EF data in WSP Support Appe                                                                                                                                                                                                                                                                                                                                                             | ndix         |               |                      |            |                 |            |            |            |             |              |        |
|                                                                                                                                                                                                                                                                                                                                                                                             |              |               |                      |            |                 |            |            |            |             |              |        |

### Notes \*\*\*

VMT for delivery/hauling for all vehicles includes: (1) materials deliveries to site, (2) materials removal from site, other VMT as specified below.

Support Vehicle VMT: best estimate at time of filing, 10 LDT (gasoline) at 30 VMT/day

CARB-CEIDARS, Updated Fractions for PM Profiles: PM2.5 = 0.991 of PM10 for Diesel Exhaust, and 0.998 for Gasoline Vehicles.

# CONSTRUCTION PHASE - Worker Travel - Emissions

|                                                  | 3                | LDA-gas   |            |             |                                     |                                                           |               |            |        |  |
|--------------------------------------------------|------------------|-----------|------------|-------------|-------------------------------------|-----------------------------------------------------------|---------------|------------|--------|--|
| Worker Travel to Site                            |                  |           |            |             | •                                   | WSP Support A                                             | Appendix      |            |        |  |
| Avg Occupancy/Vehicle:                           | 0                |           |            |             |                                     |                                                           |               |            |        |  |
| Avg Roundtrip Distance, miles:                   | 0.0              |           |            | Emissio     | ns Factors (Ibs/                    | ′VMT)                                                     |               |            |        |  |
| Avg # of Worker Vehicles, per day:               | 0                |           | NOx        | CO          | voc`                                | SOx                                                       | PM10          | CO2        |        |  |
| Avg Daily Worker VMT:                            | 0                |           | 8.5075E-05 | 0.000810295 | 1.5737E-05                          | 0.00006                                                   | 0.000004      | 0.56063169 |        |  |
| Max # of Worker Vehicles, per day:               | 0                |           |            |             |                                     |                                                           |               |            |        |  |
| Max Daily Worker VMT:                            | 0                |           |            | Da          | ily Emissions                       | (lbs)                                                     |               |            |        |  |
| Total Const Days:                                | 240              |           | NOx        | CO          | VOC                                 | SOx                                                       | PM10          | CO2        | PM2.5  |  |
| Total Const Period Worker VMT:                   | 4880700          | Avg       | 0.00       | 0.00        | 0.00                                | 0.00                                                      | 0.00          | 0.00       | 0.00   |  |
| VMT data supplie                                 | ed by Applicant. |           |            |             |                                     |                                                           |               |            |        |  |
|                                                  |                  |           |            | То          | nsperConstl                         |                                                           |               |            |        |  |
|                                                  |                  | Avg       | 0.208      | 1.977       | 0.038                               | 0.015                                                     | 0.010         | 1368.1     | 0.000  |  |
|                                                  |                  |           |            |             |                                     |                                                           |               |            |        |  |
| Worker Travel by Busing from Staging             |                  | Due Deure |            | 0           |                                     |                                                           |               | V 0005     |        |  |
| Total Bus VMT/Const Period:                      | 0                |           | Trips/Day: |             | max                                 | Ref: SJVAPCD EMFAC 2014, Year 2025<br>All other buses-DSL |               |            |        |  |
| Avg Bus VMT/Const Day:<br>Max Bus VMT/Const Day: | 0<br>0           | Bus Occup | ancy/Trip: | 0           | See EF data in WSP Support Appendix |                                                           |               |            |        |  |
| Max Bus VIVIT/COlls Day.                         | 0                |           |            |             |                                     | See EF Uala III V                                         | WSP Support A | rpperiorx  |        |  |
|                                                  |                  |           |            | Emissio     | ns Factors (Ibs/                    | VMT)                                                      |               |            |        |  |
| # buses supplied by Applicant.                   |                  |           | NOx        | CO          | voc`                                | SOx                                                       | PM10          | CO2        |        |  |
|                                                  |                  |           | 0.002933   | 0.00055     | 0.000105                            | 0.000025                                                  | 0.000007      | 2.661084   |        |  |
|                                                  |                  |           |            |             |                                     |                                                           |               |            |        |  |
|                                                  |                  |           |            | Da          | ily Emissions                       | s(lbs)                                                    |               |            |        |  |
|                                                  |                  |           | NOx        | СО          | VOC                                 | SOx                                                       | PM 10         | CO2        | PM 2.5 |  |
|                                                  |                  | Avg       | 0.00       | 0.00        | 0.00                                | 0.00                                                      | 0.00          | 0.00       | 0.00   |  |
|                                                  |                  | Max       | 0.00       | 0.00        | 0.00                                | 0.00                                                      | 0.00          | 0.00       | 0.00   |  |
|                                                  |                  |           |            |             |                                     |                                                           |               |            |        |  |
|                                                  |                  | Avg       | 0.000      | 0.000       | Tonsper Cor<br>0.000                | 0.000                                                     | 0.000         | 0.000      | 0.000  |  |
|                                                  |                  |           | () ( W W ) |             |                                     |                                                           |               |            |        |  |

Ref: SJVAPCD EMFAC 2014, Year 2025

### **CONSTRUCTION PHASE - Trackout Emissions**

| Paved Road Length (miles):       | 0.1          | estimated roundtrip trackout distance |                          |                 |             |  |  |
|----------------------------------|--------------|---------------------------------------|--------------------------|-----------------|-------------|--|--|
| Daily # of Vehicles:             | 74           |                                       |                          |                 |             |  |  |
| Avg Vehicle Weight (tons):       | 6.8          |                                       | PM 10                    | PM 2.5*         |             |  |  |
| Total Unadjusted VMT/day         | 7.4          |                                       | 0.361                    |                 |             |  |  |
| Particle Size Multipliers        | PM10         |                                       | 1.924                    |                 |             |  |  |
| Ib/VMT                           | 0.023        |                                       | 0.002                    | 0.0004          | lb/VMT      |  |  |
| C factor, Ib/VMT                 | 0.00047      |                                       | 0.129                    | 0.0217          | lbs/day     |  |  |
| Road Sfc Silt Loading (g/m^2):   | 0.56         | local X 2                             | 0.001                    | 0.0002          | tons/month  |  |  |
| # of Active Trackout Points:     | 1            | * *                                   | 0.03                     | 0.0056          | tons/period |  |  |
| Added Trackout Miles:            | PM10         |                                       |                          |                 |             |  |  |
| Trackout VMT/day:                | 44           |                                       | Default Silt Load Valu   | ues for Paved I | Road Types  |  |  |
| Final Adjusted VMT/day           | 52           |                                       | Freeway                  | 0.02 g/m2       |             |  |  |
| Final Adjusted VMT/month         | 1140         |                                       | Arterial                 | 0.036 g/m2      |             |  |  |
| Final Adjusted VMT/period        | 26849        |                                       | Collector                | 0.036 g/m2      |             |  |  |
| Construction days/month:         | 22           |                                       | Local                    | 0.28 g/m2       |             |  |  |
| Adj. Construction months/period: | 23.56        |                                       | Rural                    | 1.6 g/m2        |             |  |  |
| Control Applied to Trackout:     | Gravel entra | nce, metal clea                       | ning grates, water washi | ng, sweeping    |             |  |  |
| Control Efficiency, %            | 84           | 0.84                                  | Release Factor =         | 0.16            |             |  |  |

\* PM2.5 fraction of PM10 assumed to be 0.169 (CARB CEIDARS updated fraction values) for paved roads.

\*\* 1 controlled ingress/egress point is planned for site construction

EPA, AP-42, Section 13.2.1, Proposed revisions dated 9/2008.

Use silt loading factor from default values for road type if no site specific data is available.

Trackout effects approximately 0.05 mi. of roadway arriving and departing from the site access point.

Plant access road is already paved. Entrance will be gravelled with metal grates for take out control.

Vehicle count = delivery trucks plus site support trucks (see Unpaved Onsite tab)

Worker vehicles not counted for trackout, they will park on the site perimeter.

SGF 8

2026

| ·                  | Tons/Per | iod   |      |      |       |         |       |        |
|--------------------|----------|-------|------|------|-------|---------|-------|--------|
|                    |          |       |      |      |       | F       | -ug l | Fug    |
|                    | NOx      | CO    | VOC  | SOx  | PM 10 | CO2     | PM 10 | PM 2.5 |
| on-off site travel | 2.07     | 5.12  | 0.16 | 0.06 | 0.04  | 5997    | 14.56 | 2.68   |
| on-site equipment  | 5.40     | 6.84  | 1.16 | 0.02 | 0.21  | 2227    |       |        |
| Total              | 7.47     | 11.95 | 1.33 | 0.09 | 0.25  | 8224    | 14.56 | 2.68   |
| Months:            | 20.5     |       |      |      |       |         |       |        |
| Max Year Months:   | 12       |       |      |      |       |         |       |        |
| Total per Year:    | 4.37     | 7.00  | 0.78 | 0.05 | 0.14  | 4814.02 | 8.52  | 1.57   |

# CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

# WSP Main Site Construction-SGF 8

### Assumptions:

Project:

1. The average engines employed in construction equipment use consumes fuel at a rate of:

Ref: EPA, NR-009b Publication, November 2002.

Ref: Sacramento County APCD Const. Program Data, V. 6.0.3, 3/2007.

Ref: EPA, NR-009c Publication, EPA 420-P-04-009, April 2004.

Ref: Niland Energy Project, IID, AFC Vol 2, App A.

Ref: South Coast AQMD PR XXI, Draft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03. The above noted references present fuel consumption values which range from 0.050 to 0.064 gal/hp-hr for diesel engines used in construction related equipment. The value of 0.060 gal/hp-hr was chosen as a reasonable upper mid-range value for construction diesel emissions calculations. For gasoline the mid-range value from SCAQMD of 0.11 gal/hp-hr was used.

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:                      | 9<br>8<br>0.75 | months<br>hrs/day<br>years | Construction Totals: | 422<br>3800<br>475                                                                                          | hrs/month<br>hrs/const period<br>days/const period |  |  |
|------------------------------------------------|----------------|----------------------------|----------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|
| 5. Anticipated Construction Start Year:        |                | 2025                       | 7.                   | N2O EF die                                                                                                  |                                                    |  |  |
| 6. Maximum anticipated equipment use month is: |                | n/a                        |                      | N2O EF gasoline, lb/gal: 0.000164<br>CARB, Mandatory GHG Reporting Regulation<br>Table 4, Appendix A, 2007. |                                                    |  |  |

Equipment types and use rates supplied by the Applicant.

|                               | Weighted<br>Average | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site | Total   | Total Hrs<br>per Const | Total<br>HP-Hrs |
|-------------------------------|---------------------|------------------------|-----------------|----------------------|---------|------------------------|-----------------|
| Equipment Category**          | HP                  | Project                | Hrs/day         | (each)               | Hrs/Day | Period                 | Period          |
| Aerial Lifts                  | 63                  | 1                      | 6               | 56                   | 6       | 336                    | 21168           |
| Air Compressors               | 78                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Bore-Drill Rigs               | 206                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cement Mixers                 | 9                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Concrete/Industrial Saws      | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cranes                        | 226                 | 1                      | 2               | 56                   | 2       | 112                    | 25312           |
| Crawler Tractors/Dozers       | 208                 | 3                      | 7               | 125                  | 21      | 2625                   | 546000          |
| Crushing/Processing Eq.       | 85                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Dumpers/Tenders/Water Trucks  | 16                  | 7                      | 7               | 115                  | 49      | 5635                   | 90160           |
| Excavators                    | 163                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Forklifts                     | 89                  | 8                      | 6               | 120                  | 48      | 5760                   | 512640          |
| Generator Sets                | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Graders                       | 175                 | 5                      | 7               | 65                   | 35      | 2275                   | 398125          |
| Off-Highway Tractors          | 123                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Off-Highway Trucks            | 400                 | 12                     | 7               | 132                  | 84      | 11088                  | 4435200         |
| Other Diesel Construction Eq. | 172                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other General Industrial Eq.  | 88                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other Material Handling Eq.   | 167                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pavers                        | 126                 | 1                      | 4               | 17                   | 4       | 68                     | 8568            |
| Paving Eq. Other              | 131                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Plate Compactors              | 8                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pressure Washers              | 13                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pumps                         | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Roller Compactors             | 81                  | 1                      | 7               | 25                   | 7       | 175                    | 14175           |
| Rough Terrain Forklifts       | 100                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tired Dozers           | 255                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tires Loaders          | 200                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Scrapers                      | 362                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Signal Boards                 | 6                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Skid Steer Loaders            | 65                  | 1                      | 7               | 113                  | 7       | 791                    | 51415           |
| Surfacing Eq.                 | 254                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Sweepers/Scrubbers            | 64                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Tractors                      | 98                  | 2                      | 7               | 147                  | 14      | 2058                   | 201684          |
| Front End Loaders (single     | 98                  | 1                      | 7               | 50                   | 7       | 350                    | 34300           |
| Backhoes category)            | 98                  | 1                      | 4               | 95                   | 4       | 380                    | 37240           |
| Trenchers                     | 81                  | 10                     | 4               | 141                  | 40      | 5640                   | 456840          |
| Welders                       | 46                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Gasoline Const Eq.            | 175                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |

| Const Period Diesel Hp-Hrs =     | 6832827 |      |
|----------------------------------|---------|------|
| Const Period Gasoline Hp-Hrs =   | 0       |      |
| Const Period Diesel Fuel Use =   | 409970  | gals |
| Const Period Gasoline Fuel Use = | 0       | gals |

gal/hp-hr

gal/hp-hr

0.06

0.11

diesel

gasoline

Offroad equipment emissions factors derived SCAQMD Off Road database for 2025.

The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              | 2025 Equipment Emissions Factors |        |        |         |        |          |         |  |  |  |  |
|----------------------------------------------|----------------------------------|--------|--------|---------|--------|----------|---------|--|--|--|--|
| Equip.                                       | lbs/hr                           | lbs/hr | lbs/hr | lbs/hr  | lbs/hr | lbs/hr   | lbs/hr  |  |  |  |  |
| Туре                                         | VOC (ROG)                        | CO     | NOx    | SOx     | PM10   | CO2      | CH4     |  |  |  |  |
| Aerial Lifts                                 | 0.0184                           | 0.1646 | 0.1366 | 0.0004  | 0.0048 | 34.7217  | 0.0017  |  |  |  |  |
| Air Compressors                              | 0.0349                           | 0.3027 | 0.2104 | 0.0007  | 0.0088 | 63.6073  | 0.0031  |  |  |  |  |
| Bore-Drill Rigs                              | 0.0428                           | 0.5007 | 0.2864 | 0.0017  | 0.0042 | 164.8678 | 0.0039  |  |  |  |  |
| Cement Mixers                                | 0.0085                           | 0.0414 | 0.0534 | 0.0001  | 0.0021 | 7.2481   | 0.0008  |  |  |  |  |
| Concrete/Industrial Saws                     | 0.0337                           | 0.3706 | 0.2471 | 0.0007  | 0.0093 | 58.4637  | 0.0030  |  |  |  |  |
| Cranes                                       | 0.0681                           | 0.3738 | 0.4223 | 0.0014  | 0.0143 | 128.6241 | 0.0061  |  |  |  |  |
| Crawler Tractors/Dozers                      | 0.0789                           | 0.5065 | 0.4492 | 0.0013  | 0.0227 | 114.0167 | 0.0071  |  |  |  |  |
| Crushing/Processing Eq.                      | 0.0693                           | 0.6187 | 0.3763 | 0.0015  | 0.0146 | 132.3077 | 0.0062  |  |  |  |  |
| Dumpers/Tenders                              | 0.0092                           | 0.0314 | 0.0581 | 0.0001  | 0.0022 | 7.6244   | 0.0008  |  |  |  |  |
| Excavators                                   | 0.0559                           | 0.5086 | 0.2269 | 0.0013  | 0.0086 | 119.5792 | 0.0050  |  |  |  |  |
| Forklifts                                    | 0.0236                           | 0.2148 | 0.0860 | 0.0006  | 0.0025 | 54.3958  | 0.0021  |  |  |  |  |
| Generator Sets                               | 0.0288                           | 0.2667 | 0.2329 | 0.0007  | 0.0081 | 60.9927  | 0.0026  |  |  |  |  |
| Graders                                      | 0.0676                           | 0.5696 | 0.3314 | 0.0015  | 0.0147 | 132.7431 | 0.0061  |  |  |  |  |
| Off-Highway Tractors                         | 0.1134                           | 0.6101 | 0.7291 | 0.0017  | 0.0331 | 151.3869 | 0.0102  |  |  |  |  |
| Off-Highway Trucks                           | 0.1140                           | 0.5385 | 0.4769 | 0.0027  | 0.0142 | 260.0652 | 0.0103  |  |  |  |  |
| Other Diesel Construction Eq.                | 0.0442                           | 0.3474 | 0.2021 | 0.0013  | 0.0069 | 122.5051 | 0.0040  |  |  |  |  |
| Other General Industrial Eq.                 | 0.0747                           | 0.4438 | 0.3947 | 0.0016  | 0.0130 | 152.2399 | 0.0067  |  |  |  |  |
| Other Material Handling Eq.                  | 0.0696                           | 0.4355 | 0.3844 | 0.0015  | 0.0124 | 141.1941 | 0.0063  |  |  |  |  |
| Pavers                                       | 0.0717                           | 0.4745 | 0.3858 | 0.0009  | 0.0220 | 77.9326  | 0.0065  |  |  |  |  |
| Paving Eq. Other                             | 0.0548                           | 0.3993 | 0.3281 | 0.0008  | 0.0190 | 68.9364  | 0.0049  |  |  |  |  |
| Plate Compactors                             | 0.0050                           | 0.0263 | 0.0314 | 0.0001  | 0.0012 | 4.3138   | 0.0005  |  |  |  |  |
| Pressure Washers                             | 0.0066                           | 0.0531 | 0.0561 | 0.0001  | 0.0019 | 9.4135   | 0.0006  |  |  |  |  |
| Pumps                                        | 0.0270                           | 0.2617 | 0.2079 | 0.0006  | 0.0078 | 49.6066  | 0.0024  |  |  |  |  |
| Roller Compactors                            | 0.0410                           | 0.3763 | 0.2501 | 0.0008  | 0.0122 | 67.0308  | 0.0037  |  |  |  |  |
| Rough Terrain Forklifts                      | 0.0396                           | 0.4430 | 0.2336 | 0.0008  | 0.0090 | 70.2808  | 0.0036  |  |  |  |  |
| Rubber Tired Dozers                          | 0.1672                           | 0.6620 | 1.0824 | 0.0025  | 0.0419 | 239.0780 | 0.0151  |  |  |  |  |
| Rubber Tires Loaders                         | 0.0559                           | 0.4311 | 0.2835 | 0.0012  | 0.0121 | 108.6113 | 0.0050  |  |  |  |  |
| Scrapers                                     | 0.1495                           | 0.7187 | 0.8387 | 0.0027  | 0.0335 | 262.4827 | 0.0135  |  |  |  |  |
| Signal Boards                                | 0.0111                           | 0.0909 | 0.0718 | 0.0002  | 0.0029 | 16.6983  | 0.0010  |  |  |  |  |
| Skid Steer Loaders                           | 0.0186                           | 0.2104 | 0.1354 | 0.0004  | 0.0019 | 30.2740  | 0.0017  |  |  |  |  |
| Surfacing Eq.                                | 0.0638                           | 0.3590 | 0.3924 | 0.0017  | 0.0142 | 165.9715 | 0.0058  |  |  |  |  |
| Sweepers/Scrubbers                           | 0.0410                           | 0.4840 | 0.2255 | 0.0009  | 0.0061 | 78.5433  | 0.0037  |  |  |  |  |
| Tractors                                     | 0.0336                           | 0.3586 | 0.1857 | 0.0008  | 0.0059 | 66.7965  | 0.0030  |  |  |  |  |
| Front End Loaders                            | 0.0336                           | 0.3586 | 0.1857 | 0.0008  | 0.0059 | 66.7965  | 0.0030  |  |  |  |  |
| Backhoes                                     | 0.0336                           | 0.3586 | 0.1857 | 0.0008  | 0.0059 | 66.7965  | 0.0030  |  |  |  |  |
| Trenchers                                    | 0.0674                           | 0.4085 | 0.3481 | 0.0007  | 0.0215 | 58.7116  | 0.0061  |  |  |  |  |
| Welders                                      | 0.0214                           | 0.1745 | 0.1373 | 0.0003  | 0.0052 | 25.6027  | 0.0019  |  |  |  |  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771                           | 0.3855 | 1.08   | 0.00014 | 0.1542 | 14.1565  | 0.00037 |  |  |  |  |
| (gasoline FFs: FPA OMS-AMD Report NR-009A    |                                  |        |        |         | 2016)  |          |         |  |  |  |  |

(gasoline EFs: EPA OMS-AMD Report NR-009A, 2-13-98, and SCAQMD EMFAC 2007 CEQA Tables, 2016.)

### Construction Period Emissions, lbs

|                               | U    | onstruction P | eriod Emissio | ns, ibs |      |         |         |             |
|-------------------------------|------|---------------|---------------|---------|------|---------|---------|-------------|
| Equip.                        |      |               |               |         |      |         |         |             |
| Туре                          |      |               |               |         |      |         |         |             |
|                               | VOC  | СО            | NOx           | SOx     | PM10 | CO2     | CH4     |             |
| Aerial Lifts                  | 6    | 55            | 46            | 0       | 2    | 11666   | 1       |             |
| Air Compressors               | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Bore-Drill Rigs               | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Cement Mixers                 | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Concrete/Industrial Saws      | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Cranes                        | 8    | 42            | 47            | 0       | 2    | 14406   | 1       |             |
| Crawler Tractors/Dozers       | 207  | 1329          | 1179          | 3       | 60   | 299294  | 19      |             |
| Crushing/Processing Eq.       | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Dumpers/Tenders               | 52   | 177           | 328           | 1       | 12   | 42963   | 5       |             |
| Excavators                    | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Forklifts                     | 136  | 1237          | 495           | 3       | 14   | 313320  | 12      |             |
| Generator Sets                | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Graders                       | 154  | 1296          | 754           | 3       | 34   | 301990  | 14      |             |
| Off-Highway Tractors          | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Off-Highway Trucks            | 1265 | 5970          | 5288          | 29      | 158  | 2883603 | 114     |             |
| Other Diesel Construction Eq. |      |               |               |         |      |         |         |             |
| -                             | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Other General Industrial Eq.  | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Other Material Handling Eq.   | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Pavers                        | 5    | 32            | 26            | 0       | 1    | 5299    | 0       |             |
| Paving Eq. Other              | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Plate Compactors              | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Pressure Washers              | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Pumps                         | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Roller Compactors             | 7    | 66            | 44            | 0       | 2    | 11730   | 1       |             |
| Rough Terrain Forklifts       | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Rubber Tired Dozers           | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Rubber Tires Loaders          | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Scrapers                      | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Signal Boards                 | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Skid Steer Loaders            | 15   | 166           | 107           | 0       | 2    | 23947   | 1       |             |
| Surfacing Eq.                 | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Sweepers/Scrubbers            | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Tractors                      | 69   | 738           | 382           | 2       | 12   | 137467  | 6       |             |
| Front End Loaders             | 12   | 126           | 65            | 0       | 2    | 23379   | 1       |             |
| Backhoes                      | 13   | 136           | 71            | 0       | 2    | 25383   | 1       |             |
| Trenchers                     | 380  | 2304          | 1963          | 4       | 121  | 331134  | 34      |             |
| Welders                       | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
| Gasoline Const Eq.            | 0    | 0             | 0             | 0       | 0    | 0       | 0       |             |
|                               | 2    |               |               | Ŭ       | Ŭ    | ~       | 2       |             |
| Totals                        | VOC  | СО            | NOx           | SOx     | PM10 | PM2.5   | CO2     | CH4         |
| lbs per const. period         | 2328 | 13675         | 10795         | 47      | 424  | 419.95  | 4425582 | 210         |
| tons per const. period        | 1.2  | 6.8           | 5.4           | 0.024   | 0.21 | 0.21    | 2212.79 | 0.11        |
| Average lbs/day =             | 4.9  | 28.8          | 22.7          | 0.024   | 0.21 | 0.21    | 9317.01 | 0.11        |
| Normalized TPY =              | 4.9  | 28.8<br>6.8   | 5.4           | 0.033   | 0.89 | 0.88    | 2212.8  | 0.44<br>0.1 |
|                               | 1.4  | 0.0           | 5.7           | 0.027   | 0.2  | 0.2     | 2212.0  | 0.1         |
|                               |      |               |               |         |      |         |         |             |

 CO2e, tons/period
 2226.6

 CO2e, tons/yr:
 2226.6

N2O 75 0.04 0.16 0.040

CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

Other Assumptions and References:

1. Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08.

Optimum trench construction progress rate is 80m (260ft) per day.

Non-optimum trench construction progress rate is 30m (100 ft) per day.

An average progress of 180 ft/day is used where applicable.

2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness.

A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable.

The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr.

- Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001.
- 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.
- 4. Construction schedule note: applicant data indicates a construction work day period of 8 hours
  - The equipment use rates provided by the applicant are consistent with an 8 hour workday.
- 5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.

| CONSTRUCTIO                                          |                |                      |                    |                 |                      |                  |                 |        |
|------------------------------------------------------|----------------|----------------------|--------------------|-----------------|----------------------|------------------|-----------------|--------|
| MRI Level 2 Ana                                      |                |                      | _                  |                 | Acres                | 3160             |                 |        |
| A cres Subject to (                                  |                |                      |                    |                 |                      | 316              |                 |        |
| Max Acres Subje                                      |                |                      |                    | day of this pl  | hase:                | 23.7             | note (10)       |        |
| Emissions Factor                                     |                | ,                    |                    |                 |                      | 0.12             |                 |        |
| PM2.5 fraction of                                    | PM10 (per      |                      | S Profiles):       |                 |                      | 0.21             |                 |        |
| Activity Levels:                                     |                | Hrs/Day:             |                    |                 |                      | 8                |                 |        |
|                                                      |                | Days/Wk:             | Applicant Data     |                 |                      | 5                |                 |        |
|                                                      |                | Days/Month:          |                    | 22              |                      |                  |                 |        |
|                                                      | Phase Const    | Period, Months:      |                    |                 |                      | 20.5             | 1.71            | years  |
|                                                      | Phase Co       | nst Period, Days:    |                    |                 |                      | 451              |                 |        |
| Wet Season Adju                                      | ustment:       | (Per AP-42, Se       | ction 13.2.2, Figu | ıre 13.2.2-1, 1 | 2/03 or CalEEMo      | d, Appendix D,   | Table 1.1.)     |        |
| Μ                                                    | lean#days/y    | yearwithrain>=       | 0.01 inch:         |                 |                      | 40               |                 |        |
| Μ                                                    | lean # month   | ns/yrwithrain>=      | 0.01 inch:         |                 |                      | 1.33             |                 |        |
| A                                                    | djusted Con    | st Period, Months    | 8                  |                 |                      | 18.22            |                 |        |
| A                                                    | djusted Con    | st Period, Days:     |                    |                 |                      | 383              |                 |        |
|                                                      |                |                      |                    |                 |                      |                  |                 |        |
| Controlsfor Fug                                      | jitive Dust:   |                      | Pro                | oposed wateri   | ng cycle:            | 3                | times per day   |        |
|                                                      |                |                      |                    |                 |                      |                  |                 |        |
| 3 watering cycles/                                   | '8 hour cons   | truction shift yield | ds a 68% reductio  | n, use 68% fo   | or non-desert sites. | (11)(12)         |                 |        |
| Speed control of c                                   | onsite const t | raffic to <15 mph    | yields a 40-70%    | reduction (us   | e 50% control as o   | conservative for | site). (11)(12) |        |
|                                                      |                | Calculated %         | control based on   | mitigations pr  | oposed:              | 84               | % control       |        |
| Conservative control % used for emissions estimates: |                |                      |                    |                 | imates:              | 84               | % control       |        |
|                                                      |                |                      |                    |                 |                      | 0.16             | releasefraction |        |
| Emissions: Conti                                     | rolled         | PM10                 | PM2.5              |                 |                      |                  |                 |        |
| to                                                   | ons/month      | 0.455                | 0.096              |                 |                      |                  |                 |        |
| to                                                   | ons/period     | 8.292                | 1.741              |                 |                      |                  |                 |        |
| Max Ib                                               | os/day         | 41.367               | 8.687              |                 |                      |                  |                 |        |
|                                                      |                |                      |                    |                 |                      |                  |                 |        |
| Soil Handling Er                                     | missions (Cu   | ut and Fill): (2)    |                    |                 |                      |                  |                 |        |
| Total cu.yds of so                                   | il handled:    |                      | 0                  |                 | Mean annual w        | ind speed, mph:  | (8)             | 8.03   |
| Total tons of soil                                   | handled:       |                      | 0.0                |                 | Avg. Soil moist      | ure, %: (9)      |                 | 5      |
| Total days soil ha                                   | ndled:         |                      | 383                |                 | Avg. Soil densi      | ty, tons/cu.yd:  |                 | 1.3    |
| Tons soil/day:                                       |                |                      | 0                  |                 | k factor for PM      | 10:              |                 | 0.35   |
| Control Eff, water                                   | ring, %        |                      | 80                 |                 | Number of Dro        | ps per ton:      |                 | 4      |
|                                                      | Rele           | ase Fraction:        | 0.2                |                 | Calc 1               | wind             |                 | 1.851  |
|                                                      |                |                      |                    |                 | Calc 2               | moisture         |                 | 3.607  |
| Emissions:                                           | PM10           | PM2.5                |                    |                 | Calc 3               | int              |                 | 0.513  |
| tons/period                                          | 0.000          | 0.000                |                    |                 | Calc 4               | PM10             | lb/ton          | 0.0006 |
| tons/month                                           | 0.000          | 0.000                |                    |                 | PM2.5 fraction       | of PM10:         |                 | 0.210  |
| max Ibs/day                                          | 0.000          | 0.000                |                    |                 |                      |                  |                 |        |
| -                                                    |                |                      |                    |                 |                      |                  |                 |        |
|                                                      |                | EmissionsTot         | als                | PM 10           | PM 2.5               |                  |                 |        |
|                                                      |                |                      | tons/period        | 8.292           | 1.741                |                  |                 |        |
|                                                      |                |                      |                    |                 |                      |                  |                 |        |

### Methodology References:

(1) MRI Report, South Coast AQMD Project No. 95040, March 1996, Level 2 Analysis Procedure.

MRI Report uncontrolled factor of 0.11 tons/acre/month is based on 168 hours per month of const activity.

For an activity rate of ~180 hrs/month, the adjusted EF would be 0.12 tons/acre/month (uncontrolled).

(2) Soil Handling (Cut and Fill), EPA, AP-42, Section 13.2.4., 11/06.

(3) URBEMIS, Version 9.2.4, User's Manual Appendix A, page A-6.

(4) CARB Area Source Methodology, Section 7.7, 9/02.

(5) WRAP Fugitive Dust Handbook, 9/06.

(6) USEPA, AP-42, Section 13.2.3, 2/10.

(7) Estimating PM Emissions from Construction Operations, USEPA, MRI, 9/99.

(8) Wind speed data for Lemoore met station. Annual avg wind speed = 8.03 mph, % calms = 3.44%.

(9) Soil Moisture; 5% assumed avg value

(10) adjusted applicant value based on 7.5% of total acreage disturbed on any given day

(11) SCAQMD CEQA Handbook 1993.

(12) SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres, Fugitive Dust Mitigations, February 2005.

# OFFSITE PAVED ROAD FUGITIVE DUST EMISSIONS

(associated with delivery truck and worker vehicle traffic on I-5 and plant access road)

| A verage mi                      | leage for const                        | ruction rela              | ated vehicles:             | NA      | miles, roundtrip distance***                                                    |  |  |  |  |
|----------------------------------|----------------------------------------|---------------------------|----------------------------|---------|---------------------------------------------------------------------------------|--|--|--|--|
| Avg weight                       | of vehiculared                         | quipment o                | n road:                    | 4.1     | tons (range 2 - 42 tons)                                                        |  |  |  |  |
| Road surface                     | cesilt loading fa                      | actor:                    |                            | 0.015   | g/m2 (range 0.03 - 400 g/m2)<br>Limited Access Freeway >10,000 ADT <b>(I-5)</b> |  |  |  |  |
| Particlesiz                      | e multiplier fac                       | tors:                     | PM10                       | 0.0022  | Ib/VMT                                                                          |  |  |  |  |
|                                  |                                        |                           | PM2.5                      | 0.00054 |                                                                                 |  |  |  |  |
|                                  |                                        |                           |                            |         |                                                                                 |  |  |  |  |
| C factors (brake and tire wear): |                                        | PM10                      | 0.00047                    | Ib/VMT  |                                                                                 |  |  |  |  |
|                                  |                                        |                           | PM2.5                      | 0.00036 | Ib/VMT                                                                          |  |  |  |  |
|                                  |                                        |                           |                            | 07      |                                                                                 |  |  |  |  |
| Avg vehicle speed on road:       |                                        |                           |                            | 65      | mph                                                                             |  |  |  |  |
| Avg. Number of vehicles per day: |                                        |                           |                            | 195     |                                                                                 |  |  |  |  |
| Avg. Numi                        |                                        | ci udy.                   |                            | 190     | calculated per Applicant da                                                     |  |  |  |  |
| Ava. Numb                        | er of work days                        | s per month               | 1:                         | 22      | VMT/period: 13533715                                                            |  |  |  |  |
| <u>9</u>                         |                                        | •                         | otal vehicles per month:   | 4290    |                                                                                 |  |  |  |  |
| Number of                        | work months:                           |                           | ·                          | 8       | adjusted for precip events                                                      |  |  |  |  |
|                                  |                                        | Total ve                  | hicles per const period:   | 34320   |                                                                                 |  |  |  |  |
|                                  |                                        |                           |                            |         |                                                                                 |  |  |  |  |
|                                  |                                        | PM10                      |                            |         |                                                                                 |  |  |  |  |
|                                  | Calc 1                                 | 0.022                     |                            |         |                                                                                 |  |  |  |  |
|                                  | Calc 2                                 | 4.217                     |                            |         |                                                                                 |  |  |  |  |
|                                  | Calc 3                                 | 0.0007                    | lb/VMT                     |         |                                                                                 |  |  |  |  |
|                                  | Emissions<br>Ibs/period<br>tons/period | PM 10<br>9109.51<br>4.555 | PM 2.5<br>1539.51<br>0.770 |         |                                                                                 |  |  |  |  |

EPA, AP-42, Section 13.2.1, March 2006, updated 9/2008.

PM2.5 fraction of PM10 per CARB CEIDARs is 0.169

\*\*\* Note: avg roundtrip distance traveled by delivery or worker vehicles on freeways (I-5) and other State Routes in the project area.

Vehicles per day: worker + deliveries+staff support vehicles (averages)

# ONSITE UNPAVED ROAD FUGITIVE DUST

| Length of Unpaved Roads of                                                                                                                          | ion site:                                | 0.1                                       | miles*                    |                                                          |                           |                           |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|---------------------------|----------------------------------------------------------|---------------------------|---------------------------|--|--|--|
| Avg weight of construction                                                                                                                          | vehiculare                               | quipment on road:                         | 4.1                       | tons (range 2 - 42 tons)                                 |                           |                           |  |  |  |
| Road surface silt content:<br>Road surface material moisture content:                                                                               |                                          |                                           | 8.5<br>5                  | % (range 1.8 - 35%)<br>% (range 0.03 - 13%)              |                           |                           |  |  |  |
| Particle size multiplier facto                                                                                                                      | ors:                                     | PM10<br>PM2.5                             | k<br>1.5<br>0.15          | a<br>0.9<br>0.9                                          | b<br>0.45<br>0.45         |                           |  |  |  |
| C factors (brake and tire wear): PM10<br>PM2.5                                                                                                      |                                          | 0.00047<br>0.00036                        | Ib/VMT<br>Ib/VMT          |                                                          |                           |                           |  |  |  |
| Avg construction vehicle speed on road:                                                                                                             |                                          |                                           | 5                         | mph (range 5                                             | mph (range 5-55 mph)      |                           |  |  |  |
| Avg number of construction                                                                                                                          | n vehicles pe                            | er day:                                   | 74                        | * *                                                      |                           |                           |  |  |  |
| Number of construction work days per month:<br>Total vehicles per month:<br>Number of construction work months:<br>Total vehicles per const period: |                                          |                                           | 22<br>1628<br>8<br>134396 | VMT/period: 13439.6<br>adjusted for precipitation events |                           |                           |  |  |  |
| Control reduction due to wa                                                                                                                         |                                          |                                           | <mark>80</mark><br>0.8    |                                                          |                           |                           |  |  |  |
|                                                                                                                                                     |                                          | Release Fraction =                        | 0.2                       |                                                          |                           |                           |  |  |  |
| Calc 1<br>Calc 2<br>Calc 3<br>Calc 4                                                                                                                | PM10<br>0.733<br>1.151<br>1.266<br>1.266 | PM2.5<br>0.733<br>1.151<br>0.127<br>0.127 |                           | Emissions<br>Ibs/period<br>tons/period                   | PM 10<br>3403.54<br>1.702 | PM 2.5<br>341.20<br>0.171 |  |  |  |

EPA, AP-42, Section 13.2.2, March 2006

Soil Moisture; 5% avg

Soil silt content: 8.5% per AP-42 for construction site scraper routes

\*\* const equipment plus site support pickups plus

#### CONSTRUCTION PHASE - Truck Hauling/Delivery and Site Support Vehicle Emissions All Phases

| All Phases                      |              |               |                       |            |                 |            |            |            |             |              |        |
|---------------------------------|--------------|---------------|-----------------------|------------|-----------------|------------|------------|------------|-------------|--------------|--------|
| Delivery/Hauling Vehicle Use Ra | ates         |               |                       | Emissio    | ons Factors (Ib | s/vmt)     |            |            |             |              |        |
| Delivery Roundtrip Distance:    | 0            | miles         | NOx                   | CO         | VOC             | SOx        | PM10       | CO2        |             |              |        |
| Const Days per Period:          | 0            |               | 0.00133459            | 0.00037027 | 6.2834E-05      | 0.000025   | 1.0747E-05 | 2.91617689 | HDDT        |              |        |
| Avg Deliveries per Day:         | 0            |               | 0.00026191            | 0.00201574 | 3.9247E-05      | 0.000011   | 2.7302E-06 | 0.8745735  | MDGT        |              |        |
| Fraction of Deliveries-Diesel:  | 0.95         | HDDT          |                       |            | Daily Emiss     | ions (lbs) |            |            |             |              |        |
| Fraction of Deliveries-Gas:     | 0.05         | MDGT          | NOx                   | СО         | VOC             | SOx        | PM 10      | CO2        | PM 2.5      |              |        |
| Total Delivery VMT:             | 2481715      | per Applicant | 0.000                 | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | HDDT         |        |
| Total Daily VMT-Diesel          | 0            |               | 0.000                 | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | MDGT         |        |
| Total Daily VMT-Gasoline        | 0            |               |                       | ٦          | ΓonsperCon      | st Period  |            |            |             |              |        |
| Total Period VMT-Diesel         | 2357629.25   | 5             | 1.573                 | 0.436      | 0.074           | 0.029      | 0.013      | 3437.6     | 0.011       | HDDT         |        |
| Total Period VMT-Gasoline       | 124085.75    |               | 0.016                 | 0.125      | 0.002           | 0.001      | 0.000      | 54.3       | 0.000       | MDGT         |        |
| Construction Site Support Vehic | de Use Rates | (LDTs)        |                       |            | Daily Emissi    | ons, Ibs   |            |            |             |              |        |
| Gasoline Vehicle VMT Period:    | 75900        |               | NOx                   | СО         | VOC             | SOx        | PM 10      | CO2        |             |              | PM 2.5 |
| Avg Daily Gasoline VMT:         | 300          |               | 0.0002232             | 0.00204313 | 3.6203E-05      | 0.000007   | 3.782E-06  | 0.55087942 | lbs/vmt*    | LDT gasoline |        |
| Avg Daily Diesel VMT:           | 0            |               | 0.0670                | 0.6129     | 0.0109          | 0.0021     | 0.0011     | 165.2638   | lbs/day     | gasoline     | 0.0007 |
| Total Phase Const Days:         | 240          |               |                       |            |                 |            |            |            |             |              |        |
|                                 |              |               | Tons per Const Period |            |                 |            |            |            |             |              |        |
| Ref: EMFAC 2014, SJV APCD Ye    | ear 2023     |               | 0.0085                | 0.0775     | 0.0014          | 0.0003     | 0.0001     | 20.9       | tons/period | gasoline     | 0.0001 |
| LDT1-gas, MDV-gas, HDDT-dsl     |              |               |                       |            |                 |            |            |            |             |              |        |
| See EF data in WSP Support Appe | andix        |               |                       |            |                 |            |            |            |             |              |        |
|                                 |              |               |                       |            |                 |            |            |            |             |              |        |

#### Notes \*\*\*

VMT for delivery/hauling for all vehicles includes: (1) materials deliveries to site, (2) materials removal from site, other VMT as specified below.

Support Vehicle VMT: best estimate at time of filing, 10 LDT (gasoline) at 30 VMT/day

CARB-CEIDARS, Updated Fractions for PM Profiles: PM2.5 = 0.991 of PM10 for Diesel Exhaust, and 0.998 for Gasoline Vehicles.

# CONSTRUCTION PHASE - Worker Travel - Emissions

|                                      |                  | •         |              |             | LDA-gas                                 |                     | 1, 104 2020   |            |        |
|--------------------------------------|------------------|-----------|--------------|-------------|-----------------------------------------|---------------------|---------------|------------|--------|
| Worker Travel to Site                |                  |           |              |             | -                                       | n WSP Support /     | Appendix      |            |        |
| Avg Occupancy/Vehicle:               | 0                |           |              |             |                                         |                     | ppondix       |            |        |
| Avg Roundtrip Distance, miles:       | 0.0              |           |              | Emissio     | ons Factors (Ibs/VMT)                   |                     |               |            |        |
| Avg # of Worker Vehicles, per day:   | 0                |           | NOx          | CO          | VOC                                     | ŚOx                 | PM10          | CO2        |        |
| Avg Daily Worker VMT:                | 0                |           | 8.5075E-05   | 0.000810295 | 1.5737E-05                              | 0.00006             | 0.000004      | 0.56063169 |        |
| Max # of Worker Vehicles, per day:   | 0                |           |              |             |                                         |                     |               |            |        |
| Max Daily Worker VMT:                | 0                |           |              | Da          | aily Emissions                          | s(lbs)              |               |            |        |
| Total Const Days:                    | 240              |           | NOx          | CO          | VOC                                     | SOx                 | PM10          | CO2        | PM2.5  |
| Total Const Period Worker VMT:       | 11052000         | Avg       | 0.00         | 0.00        | 0.00                                    | 0.00                | 0.00          | 0.00       | 0.00   |
| VMT data suppli                      | ed by Applicant. | -         |              |             |                                         |                     |               |            |        |
|                                      |                  |           |              | То          | nsperConst                              | Period              |               |            |        |
|                                      |                  | Avg       | 0.470        | 4.478       | 0.087                                   | 0.033               | 0.022         | 3098.1     | 0.000  |
| Worker Travel by Busing from Staging | Area             |           |              |             |                                         |                     |               |            |        |
| Total Bus VMT/Const Period:          | 0                | Bus Round | d Trips/Day: | 0           | max Ref: SJV APCD EMFAC 2014, Year 2025 |                     |               |            |        |
| Avg Bus VMT/Const Day:               | 0                | Bus Occup | oancy/Trip:  | 0           |                                         | All other buses-DSL |               |            |        |
| Max Bus VMT/Const Day:               | 0                |           |              |             |                                         | See EF data in V    | WSP Support A | ppendix    |        |
|                                      |                  |           |              | Emissio     | ns Factors (Ibs                         | /VMT)               |               |            |        |
| # buses supplied by Applicant.       |                  |           | NOx          | CO          | VOC                                     | SOx                 | PM10          | CO2        |        |
|                                      |                  |           | 0.002933     | 0.00055     | 0.000105                                | 0.000025            | 0.000007      | 2.661084   |        |
|                                      |                  |           |              | Da          | aily Emissions                          | s (lbs)             |               |            |        |
|                                      |                  |           | NOx          | CO          | VOC                                     | SOx                 | PM 10         | CO2        | PM 2.5 |
|                                      |                  | Avg       | 0.00         | 0.00        | 0.00                                    | 0.00                | 0.00          | 0.00       | 0.00   |
|                                      |                  | Max       | 0.00         | 0.00        | 0.00                                    | 0.00                | 0.00          | 0.00       | 0.00   |
|                                      |                  |           |              |             |                                         |                     |               |            |        |
|                                      |                  |           |              |             | Tonsper Co                              |                     |               |            |        |
|                                      |                  | Avg       | 0.000        | 0.000       | 0.000                                   | 0.000               | 0.000         | 0.000      | 0.000  |

Ref: SJVAPCD EMFAC 2014, Year 2025

### **CONSTRUCTION PHASE - Trackout Emissions**

| Paved Road Length (miles):       | 0.1          | estimated roundtrip trackout distance |                           |                 |             |  |  |
|----------------------------------|--------------|---------------------------------------|---------------------------|-----------------|-------------|--|--|
| Daily # of Vehicles:             | 74           |                                       |                           |                 |             |  |  |
| Avg Vehicle Weight (tons):       | 6.8          |                                       | PM 10                     | PM 2.5*         |             |  |  |
| Total Unadjusted VMT/day         | 7.4          |                                       | 0.361                     |                 |             |  |  |
| Particle Size Multipliers        | PM10         |                                       | 1.924                     |                 |             |  |  |
| Ib/VMT                           | 0.023        |                                       | 0.002                     | 0.0004          | lb/VMT      |  |  |
| C factor, Ib/VMT                 | 0.00047      |                                       | 0.129                     | 0.0217          | lbs/day     |  |  |
| Road Sfc Silt Loading (g/m^2):   | 0.56         | local X 2                             | 0.001                     | 0.0002          | tons/month  |  |  |
| # of Active Trackout Points:     | 1            | * *                                   | 0.01                      | 0.0019          | tons/period |  |  |
| Added Trackout Miles:            | PM10         |                                       |                           |                 |             |  |  |
| Trackout VMT/day:                | 44           |                                       | Default Silt Load Valu    | les for Paved I | Road Types  |  |  |
| Final Adjusted VMT/day           | 52           |                                       | Freeway                   | 0.02 g/m2       |             |  |  |
| Final Adjusted VMT/month         | 1140         |                                       | Arterial                  | 0.036 g/m2      |             |  |  |
| Final Adjusted VMT/period        | 9117         |                                       | Collector                 | 0.036 g/m2      |             |  |  |
| Construction days/month:         | 22           |                                       | Local                     | 0.28 g/m2       |             |  |  |
| Adj. Construction months/period: | 8.00         |                                       | Rural                     | 1.6 g/m2        |             |  |  |
| Control Applied to Trackout:     | Gravel entra | nce, metal clea                       | aning grates, water washi | ng, sweeping    |             |  |  |
| Control Efficiency, %            | 84           | 0.84                                  | Release Factor =          | 0.16            |             |  |  |

\* PM2.5 fraction of PM10 assumed to be 0.169 (CARB CEIDARS updated fraction values) for paved roads.

\*\* 1 controlled ingress/egress point is planned for site construction

EPA, AP-42, Section 13.2.1, Proposed revisions dated 9/2008.

Use silt loading factor from default values for road type if no site specific data is available.

Trackout effects approximately 0.05 mi. of roadway arriving and departing from the site access point.

Plant access road is already paved. Entrance will be gravelled with metal grates for take out control.

Vehicle count = delivery trucks plus site support trucks (see Unpaved Onsite tab)

Worker vehicles not counted for trackout, they will park on the site perimeter.

SGF 9

2027

| •                  | Tons/Per | iod   |      |      |       |         |       |        |
|--------------------|----------|-------|------|------|-------|---------|-------|--------|
|                    |          |       |      |      |       | F       | -ug l | Fug    |
|                    | NOx      | CO    | VOC  | SOx  | PM 10 | CO2     | PM 10 | PM 2.5 |
| on-off site travel | 2.07     | 5.12  | 0.16 | 0.06 | 0.04  | 5997    | 11.53 | 2.05   |
| on-site equipment  | 5.40     | 6.84  | 1.16 | 0.02 | 0.21  | 2227    |       |        |
| Total              | 7.47     | 11.95 | 1.33 | 0.09 | 0.25  | 8224    | 11.53 | 2.05   |
| Months:            | 16       |       |      |      |       |         |       |        |
| Max Year Months:   | 12       |       |      |      |       |         |       |        |
| Total per Year:    | 5.60     | 8.97  | 1.00 | 0.07 | 0.19  | 6167.97 | 8.65  | 1.54   |

# CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

## WSP Main Site Construction-SGF 9

### Assumptions:

Project:

1. The average engines employed in construction equipment use consumes fuel at a rate of:

Ref: EPA, NR-009b Publication, November 2002.

Ref: Sacramento County APCD Const. Program Data, V. 6.0.3, 3/2007.

Ref: EPA, NR-009c Publication, EPA 420-P-04-009, April 2004.

Ref: Niland Energy Project, IID, AFC Vol 2, App A.

Ref: South Coast AQMD PR XXI, Draft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03. The above noted references present fuel consumption values which range from 0.050 to 0.064 gal/hp-hr for diesel engines used in construction related equipment. The value of 0.060 gal/hp-hr was chosen as a reasonable upper mid-range value for construction diesel emissions calculations. For gasoline the mid-range value from SCAQMD of 0.11 gal/hp-hr was used.

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:                                                                                        | 16<br>8<br>1.33 | months<br>hrs/day<br>years | Construction Totals: | 225<br>3600<br>450                                                   | hrs/month<br>hrs/const period<br>days/const period                     |  |  |
|------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------|----------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| <ul><li>5. Anticipated Construction Start Year:</li><li>6. Maximum anticipated equipment use month is:</li></ul> |                 | 2026                       | 7.                   | N2O EF diesel, lb/gal: 0.000183<br>N2O EF gasoline, lb/gal: 0.000164 |                                                                        |  |  |
|                                                                                                                  |                 | n/a                        | n/a                  |                                                                      | CARB, Mandatory GHG Reporting Regulation<br>Table 4, Appendix A, 2007. |  |  |

Equipment types and use rates supplied by the Applicant.

|                               | Weighted<br>Average | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site | Total   | Total Hrs<br>per Const | Total<br>HP-Hrs |
|-------------------------------|---------------------|------------------------|-----------------|----------------------|---------|------------------------|-----------------|
| Equipment Category**          | HP                  | Project                | Hrs/day         | (each)               | Hrs/Day | Period                 | Period          |
| Aerial Lifts                  | 63<br>79            | 1                      | 6               | 56                   | 6       | 336                    | 21168           |
| Air Compressors               | 78<br>206           | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Bore-Drill Rigs               | 206                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cement Mixers                 | 9                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Concrete/Industrial Saws      | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cranes                        | 226                 | 1                      | 2               | 56                   | 2       | 112                    | 25312           |
| Crawler Tractors/Dozers       | 208                 | 3                      | 7               | 125                  | 21      | 2625                   | 546000          |
| Crushing/Processing Eq.       | 85                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Dumpers/Tenders/Water Trucks  | 16                  | 7                      | 7               | 115                  | 49      | 5635                   | 90160           |
| Excavators                    | 163                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Forklifts                     | 89                  | 8                      | 6               | 120                  | 48      | 5760                   | 512640          |
| Generator Sets                | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Graders                       | 175                 | 5                      | 7               | 65                   | 35      | 2275                   | 398125          |
| Off-Highway Tractors          | 123                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Off-Highway Trucks            | 400                 | 12                     | 7               | 132                  | 84      | 11088                  | 4435200         |
| Other Diesel Construction Eq. | 172                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other General Industrial Eq.  | 88                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other Material Handling Eq.   | 167                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pavers                        | 126                 | 1                      | 4               | 17                   | 4       | 68                     | 8568            |
| Paving Eq. Other              | 131                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Plate Compactors              | 8                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pressure Washers              | 13                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pumps                         | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Roller Compactors             | 81                  | 1                      | 7               | 25                   | 7       | 175                    | 14175           |
| Rough Terrain Forklifts       | 100                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tired Dozers           | 255                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tires Loaders          | 200                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Scrapers                      | 362                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Signal Boards                 | 6                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Skid Steer Loaders            | 65                  | 1                      | 7               | 113                  | 7       | 791                    | 51415           |
| Surfacing Eq.                 | 254                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Sweepers/Scrubbers            | 64                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Tractors                      | 98                  | 2                      | 7               | 147                  | 14      | 2058                   | 201684          |
| Front End Loaders (single     | 98                  | 1                      | 7               | 50                   | 7       | 350                    | 34300           |
| Backhoes category)            | 98                  | 1                      | 4               | 95                   | 4       | 380                    | 37240           |
| Trenchers                     | 81                  | 10                     | 4               | 141                  | 40      | 5640                   | 456840          |
| Welders                       | 46                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Gasoline Const Eq.            | 175                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |

| Const Period Diesel Hp-Hrs =     | 6832827 |      |
|----------------------------------|---------|------|
| Const Period Gasoline Hp-Hrs =   | 0       |      |
| Const Period Diesel Fuel Use =   | 409970  | gals |
| Const Period Gasoline Fuel Use = | 0       | gals |

gal/hp-hr

gal/hp-hr

0.06

0.11

diesel

gasoline

Offroad equipment emissions factors derived SCAQMD Off Road database for 2025.

The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              | 2025 Equipment Emissions Factors |        |        |         |        |          |         |  |  |  |
|----------------------------------------------|----------------------------------|--------|--------|---------|--------|----------|---------|--|--|--|
| Equip.                                       | lbs/hr                           | lbs/hr | lbs/hr | lbs/hr  | lbs/hr | lbs/hr   | lbs/hr  |  |  |  |
| Туре                                         | VOC (ROG)                        | CO     | NOx    | SOx     | PM10   | CO2      | CH4     |  |  |  |
| Aerial Lifts                                 | 0.0184                           | 0.1646 | 0.1366 | 0.0004  | 0.0048 | 34.7217  | 0.0017  |  |  |  |
| Air Compressors                              | 0.0349                           | 0.3027 | 0.2104 | 0.0007  | 0.0088 | 63.6073  | 0.0031  |  |  |  |
| Bore-Drill Rigs                              | 0.0428                           | 0.5007 | 0.2864 | 0.0017  | 0.0042 | 164.8678 | 0.0039  |  |  |  |
| Cement Mixers                                | 0.0085                           | 0.0414 | 0.0534 | 0.0001  | 0.0021 | 7.2481   | 0.0008  |  |  |  |
| Concrete/Industrial Saws                     | 0.0337                           | 0.3706 | 0.2471 | 0.0007  | 0.0093 | 58.4637  | 0.0030  |  |  |  |
| Cranes                                       | 0.0681                           | 0.3738 | 0.4223 | 0.0014  | 0.0143 | 128.6241 | 0.0061  |  |  |  |
| Crawler Tractors/Dozers                      | 0.0789                           | 0.5065 | 0.4492 | 0.0013  | 0.0227 | 114.0167 | 0.0071  |  |  |  |
| Crushing/Processing Eq.                      | 0.0693                           | 0.6187 | 0.3763 | 0.0015  | 0.0146 | 132.3077 | 0.0062  |  |  |  |
| Dumpers/Tenders                              | 0.0092                           | 0.0314 | 0.0581 | 0.0001  | 0.0022 | 7.6244   | 0.0008  |  |  |  |
| Excavators                                   | 0.0559                           | 0.5086 | 0.2269 | 0.0013  | 0.0086 | 119.5792 | 0.0050  |  |  |  |
| Forklifts                                    | 0.0236                           | 0.2148 | 0.0860 | 0.0006  | 0.0025 | 54.3958  | 0.0021  |  |  |  |
| Generator Sets                               | 0.0288                           | 0.2667 | 0.2329 | 0.0007  | 0.0081 | 60.9927  | 0.0026  |  |  |  |
| Graders                                      | 0.0676                           | 0.5696 | 0.3314 | 0.0015  | 0.0147 | 132.7431 | 0.0061  |  |  |  |
| Off-Highway Tractors                         | 0.1134                           | 0.6101 | 0.7291 | 0.0017  | 0.0331 | 151.3869 | 0.0102  |  |  |  |
| Off-Highway Trucks                           | 0.1140                           | 0.5385 | 0.4769 | 0.0027  | 0.0142 | 260.0652 | 0.0103  |  |  |  |
| Other Diesel Construction Eq.                | 0.0442                           | 0.3474 | 0.2021 | 0.0013  | 0.0069 | 122.5051 | 0.0040  |  |  |  |
| Other General Industrial Eq.                 | 0.0747                           | 0.4438 | 0.3947 | 0.0016  | 0.0130 | 152.2399 | 0.0067  |  |  |  |
| Other Material Handling Eq.                  | 0.0696                           | 0.4355 | 0.3844 | 0.0015  | 0.0124 | 141.1941 | 0.0063  |  |  |  |
| Pavers                                       | 0.0717                           | 0.4745 | 0.3858 | 0.0009  | 0.0220 | 77.9326  | 0.0065  |  |  |  |
| Paving Eq. Other                             | 0.0548                           | 0.3993 | 0.3281 | 0.0008  | 0.0190 | 68.9364  | 0.0049  |  |  |  |
| Plate Compactors                             | 0.0050                           | 0.0263 | 0.0314 | 0.0001  | 0.0012 | 4.3138   | 0.0005  |  |  |  |
| Pressure Washers                             | 0.0066                           | 0.0531 | 0.0561 | 0.0001  | 0.0019 | 9.4135   | 0.0006  |  |  |  |
| Pumps                                        | 0.0270                           | 0.2617 | 0.2079 | 0.0006  | 0.0078 | 49.6066  | 0.0024  |  |  |  |
| Roller Compactors                            | 0.0410                           | 0.3763 | 0.2501 | 0.0008  | 0.0122 | 67.0308  | 0.0037  |  |  |  |
| Rough Terrain Forklifts                      | 0.0396                           | 0.4430 | 0.2336 | 0.0008  | 0.0090 | 70.2808  | 0.0036  |  |  |  |
| Rubber Tired Dozers                          | 0.1672                           | 0.6620 | 1.0824 | 0.0025  | 0.0419 | 239.0780 | 0.0151  |  |  |  |
| Rubber Tires Loaders                         | 0.0559                           | 0.4311 | 0.2835 | 0.0012  | 0.0121 | 108.6113 | 0.0050  |  |  |  |
| Scrapers                                     | 0.1495                           | 0.7187 | 0.8387 | 0.0027  | 0.0335 | 262.4827 | 0.0135  |  |  |  |
| Signal Boards                                | 0.0111                           | 0.0909 | 0.0718 | 0.0002  | 0.0029 | 16.6983  | 0.0010  |  |  |  |
| Skid Steer Loaders                           | 0.0186                           | 0.2104 | 0.1354 | 0.0004  | 0.0019 | 30.2740  | 0.0017  |  |  |  |
| Surfacing Eq.                                | 0.0638                           | 0.3590 | 0.3924 | 0.0017  | 0.0142 | 165.9715 | 0.0058  |  |  |  |
| Sweepers/Scrubbers                           | 0.0410                           | 0.4840 | 0.2255 | 0.0009  | 0.0061 | 78.5433  | 0.0037  |  |  |  |
| Tractors                                     | 0.0336                           | 0.3586 | 0.1857 | 0.0008  | 0.0059 | 66.7965  | 0.0030  |  |  |  |
| Front End Loaders                            | 0.0336                           | 0.3586 | 0.1857 | 0.0008  | 0.0059 | 66.7965  | 0.0030  |  |  |  |
| Backhoes                                     | 0.0336                           | 0.3586 | 0.1857 | 0.0008  | 0.0059 | 66.7965  | 0.0030  |  |  |  |
| Trenchers                                    | 0.0674                           | 0.4085 | 0.3481 | 0.0007  | 0.0215 | 58.7116  | 0.0061  |  |  |  |
| Welders                                      | 0.0214                           | 0.1745 | 0.1373 | 0.0003  | 0.0052 | 25.6027  | 0.0019  |  |  |  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771                           | 0.3855 | 1.08   | 0.00014 | 0.1542 | 14.1565  | 0.00037 |  |  |  |
| (gasoline FFs: FPA OMS-AMD Report NR-009A    |                                  |        |        |         | 2016)  |          |         |  |  |  |

(gasoline EFs: EPA OMS-AMD Report NR-009A, 2-13-98, and SCAQMD EMFAC 2007 CEQA Tables, 2016.)

### Construction Period Emissions, lbs

|                                              | C      | onstruction P | eriod Emissio | ns, ids |        |            |         |      |
|----------------------------------------------|--------|---------------|---------------|---------|--------|------------|---------|------|
| Equip.                                       |        |               |               |         |        |            |         |      |
| Туре                                         |        |               |               |         |        |            |         |      |
|                                              | VOC    | СО            | NOx           | SOx     | PM10   | CO2        | CH4     |      |
| Aerial Lifts                                 | 6      | 55            | 46            | 0       | 2      | 11666      | 1       |      |
| Air Compressors                              | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Bore-Drill Rigs                              | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Cement Mixers                                | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Concrete/Industrial Saws                     | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Cranes                                       | 8      | 42            | 47            | 0       | 2      | 14406      | 1       |      |
| Crawler Tractors/Dozers                      | 207    | 1330          | 1179          | 3       | 60     | 299294     | 19      |      |
| Crushing/Processing Eq.                      | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Dumpers/Tenders                              | 52     | 177           | 327           | 1       | 12     | 42963      | 5       |      |
| Excavators                                   | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Forklifts                                    | 136    | 1237          | 495           | 3       | 14     | 313320     | 12      |      |
| Generator Sets                               | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Graders                                      | 154    | 1296          | 754           | 3       | 33     | 301991     | 14      |      |
| Off-Highway Tractors                         | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Off-Highway Trucks                           | 1264   | 5971          | 5288          | 30      | 157    | 2883603    | 114     |      |
| Other Diesel Construction Eq.                | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Other General Industrial Eq.                 | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Other Material Handling Eq.                  | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Pavers                                       | 5      | 32            | 26            | 0       | 1      | 5299       | 0       |      |
| Paving Eq. Other                             | 0      | 0             | 20            | 0       | 1 0    | 0          | 0       |      |
| Plate Compactors                             | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Pressure Washers                             | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
|                                              | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Pumps<br>Baller Compostors                   | 0<br>7 |               |               | 0       |        | 0<br>11730 | 0       |      |
| Roller Compactors<br>Rough Terrain Forklifts | 0      | 66            | 44<br>0       |         | 2<br>0 | 0          | 1       |      |
| Rubber Tired Dozers                          |        | 0             |               | 0       |        |            | Ū.      |      |
|                                              | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Rubber Tires Loaders                         | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Scrapers                                     | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Signal Boards                                | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Skid Steer Loaders                           | 15     | 166           | 107           | 0       | 2      | 23947      | 1       |      |
| Surfacing Eq.                                | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Sweepers/Scrubbers                           | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Tractors                                     | 69     | 738           | 382           | 2       | 12     | 137467     | 6       |      |
| Front End Loaders                            | 12     | 126           | 65            | 0       | 2      | 23379      | 1       |      |
| Backhoes                                     | 13     | 136           | 71            | 0       | 2      | 25383      | 1       |      |
| Trenchers                                    | 380    | 2304          | 1963          | 4       | 121    | 331133     | 34      |      |
| Welders                                      | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Gasoline Const Eq.                           | 0      | 0             | 0             | 0       | 0      | 0          | 0       |      |
| Totals                                       | VOC    | СО            | NOx           | SOx     | PM10   | PM2.5      | CO2     | CH4  |
| lbs per const. period                        | 2327   | 13676         | 10795         | 48      | 423    | 419.52     | 4425582 | 210  |
| tons per const. period                       | 1.2    | 6.8           | 5.4           | 0.024   | 0.21   | 0.21       | 2212.79 | 0.10 |
| Average lbs/day =                            | 5.2    | 30.4          | 24.0          | 0.106   | 0.94   | 0.93       | 9834.63 | 0.47 |
| Normalized TPY =                             | 0.9    | 5.1           | 4.0           | 0.0     | 0.2    | 0.2        | 1659.6  | 0.1  |

 CO2e, tons/period
 2226.6

 CO2e, tons/yr:
 1669.9

N2O 75 0.04 0.17 0.028

CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

Other Assumptions and References:

1. Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08.

Optimum trench construction progress rate is 80m (260ft) per day.

Non-optimum trench construction progress rate is 30m (100 ft) per day.

An average progress of 180 ft/day is used where applicable.

2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness.

A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable.

The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr.

- Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001.
- 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.
- 4. Construction schedule note: applicant data indicates a construction work day period of 8 hours
  - The equipment use rates provided by the applicant are consistent with an 8 hour workday.
- 5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.

|                    |                |                   |                     |                 | Aaroo           | 2565            |                 |        |
|--------------------|----------------|-------------------|---------------------|-----------------|-----------------|-----------------|-----------------|--------|
| MRI Level 2 An     |                | -                 |                     |                 | Acres           | 2565            |                 |        |
| Acres Subject to   |                |                   |                     |                 |                 | 256.5           |                 |        |
| Max Acres Subje    |                |                   | •                   | day of this pr  | nase:           | 19.2            | note (10)       |        |
| Emissions Factor   |                | ,                 |                     |                 |                 | 0.12            |                 |        |
| PM2.5 fraction of  | r PM10 (per    |                   | S Profiles):        |                 |                 | 0.21            |                 |        |
| Activity Levels:   |                | Hrs/Day:          |                     |                 |                 | 8               |                 |        |
|                    |                | Days/Wk:          |                     |                 |                 | 5               |                 |        |
|                    |                | Days/Month:       | Applicant Data      |                 |                 | 22              |                 |        |
|                    |                | Period, Months:   |                     |                 |                 | 16              | 1.33 y          | /ears  |
|                    |                | nst Period, Days: |                     |                 |                 | 450             |                 |        |
| Wet Season Adj     |                | •                 | -                   | ire 13.2.2-1, 1 | 2/03 or CalEEMo |                 | Table1.1.)      |        |
|                    |                | ∕earwithrain>=    |                     |                 |                 | 40              |                 |        |
|                    |                | ns/yrwithrain>=   |                     |                 |                 | 1.33            |                 |        |
|                    | •              | st Period, Months | 5                   |                 |                 | 14.22           |                 |        |
| A                  | djusted Con    | st Period, Days:  |                     |                 |                 | 397             |                 |        |
| Controlsfor Fug    | gitive Dust:   |                   | Pro                 | oposed waterin  | ng cycle:       | 3               | times per day   |        |
|                    | -              |                   |                     | •               | 0 7             |                 |                 |        |
| 3 watering cycles  |                |                   |                     |                 |                 |                 |                 |        |
| Speed control of a | onsite const t |                   | •                   | •               |                 |                 | , , , , , ,     |        |
|                    |                |                   | control based on    | • ·             | •               | 84              | % control       |        |
|                    |                | Conservative or   | ontrol % used for   | emissions esti  | mates:          | 84              | % control       |        |
| - · · •            |                |                   |                     |                 |                 | 0.16            | releasefraction |        |
| Emissions: Cont    |                | PM10              | PM2.5               |                 |                 |                 |                 |        |
|                    | ons/month      | 0.369             | 0.078               |                 |                 |                 |                 |        |
|                    | ons/period     | 5.253             | 1.103               |                 |                 |                 |                 |        |
| Max It             | os/day         | 33.578            | 7.051               |                 |                 |                 |                 |        |
| Soil Handling E    | missions (Cu   | ut and Fill): (2) |                     |                 |                 |                 |                 |        |
| Total cu.yds of so | oil handled:   |                   | 0                   |                 | Mean annual w   | ind speed, mph: | (8)             | 8.03   |
| Total tons of soil | handled:       |                   | 0.0                 |                 | Avg. Soil moist | ure, %: (9)     |                 | 5      |
| Total days soil ha | andled:        |                   | 397                 |                 | Avg. Soil densi | ty, tons/cu.yd: |                 | 1.3    |
| Tons soil/day:     |                |                   | 0                   |                 | k factor for PM | 10:             |                 | 0.35   |
| Control Eff, wate  | ring, %        |                   | 80                  |                 | Number of Dro   | ps per ton:     |                 | 4      |
|                    | Rele           | ase Fraction:     | 0.2                 |                 | Calc 1          | wind            |                 | 1.851  |
|                    |                |                   |                     |                 | Calc 2          | moisture        |                 | 3.607  |
| Emissions:         | PM10           | PM2.5             |                     |                 | Calc 3          | int             |                 | 0.513  |
| tons/period        | 0.000          | 0.000             |                     |                 | Calc 4          | PM10            | lb/ton          | 0.0006 |
| tons/month         | 0.000          | 0.000             |                     |                 | PM2.5 fraction  | of PM10:        |                 | 0.210  |
| max Ibs/day        | 0.000          | 0.000             |                     |                 |                 |                 |                 |        |
|                    |                | EmircianaTat      |                     |                 |                 |                 |                 |        |
|                    |                | EmissionsTot      | ais:<br>tons/period | PM 10<br>5.253  | PM 2.5<br>1.103 |                 |                 |        |
|                    |                |                   | rouahe ion          | 5.255           | 1.105           |                 |                 |        |

### Methodology References:

(1) MRI Report, South Coast AQMD Project No. 95040, March 1996, Level 2 Analysis Procedure.

MRI Report uncontrolled factor of 0.11 tons/acre/month is based on 168 hours per month of const activity.

For an activity rate of ~180 hrs/month, the adjusted EF would be 0.12 tons/acre/month (uncontrolled).

(2) Soil Handling (Cut and Fill), EPA, AP-42, Section 13.2.4., 11/06.

(3) URBEMIS, Version 9.2.4, User's Manual Appendix A, page A-6.

(4) CARB Area Source Methodology, Section 7.7, 9/02.

(5) WRAP Fugitive Dust Handbook, 9/06.

(6) USEPA, AP-42, Section 13.2.3, 2/10.

(7) Estimating PM Emissions from Construction Operations, USEPA, MRI, 9/99.

(8) Wind speed data for Lemoore met station. Annual avg wind speed = 8.03 mph, % calms = 3.44%.

(9) Soil Moisture; 5% assumed avg value

(10) adjusted applicant value based on 7.5% of total acreage disturbed on any given day

(11) SCAQMD CEQA Handbook 1993.

(12) SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres, Fugitive Dust Mitigations, February 2005.

# OFFSITE PAVED ROAD FUGITIVE DUST EMISSIONS

(associated with delivery truck and worker vehicle traffic on I-5 and plant access road)

| Average mi                 | leage for const                        | ruction related        | vehicles:                  | NA      | miles, roundtrip distance***                                                    |
|----------------------------|----------------------------------------|------------------------|----------------------------|---------|---------------------------------------------------------------------------------|
| Avg weight                 | t of vehicular eo                      | quipment on roa        | ad:                        | 4.1     | tons (range 2 - 42 tons)                                                        |
| Road surfa                 | cesiltloadingfa                        | actor:                 |                            | 0.015   | g/m2 (range 0.03 - 400 g/m2)<br>Limited Access Freeway >10,000 ADT <b>(I-5)</b> |
| Particlesiz                | ticle size multiplier factors: PM10    |                        |                            | 0.0022  | Ib/VMT                                                                          |
|                            | PM2.5                                  |                        |                            | 0.00054 | Ib/VMT                                                                          |
|                            |                                        |                        |                            |         |                                                                                 |
| C factors (k               | brake and tire w                       | ear):                  | PM10                       | 0.00047 | Ib/VMT                                                                          |
|                            | PM2.5                                  |                        |                            | 0.00036 | Ib/VMT                                                                          |
|                            |                                        |                        |                            |         |                                                                                 |
| Avg vehicle speed on road: |                                        |                        |                            | 65      | mph                                                                             |
|                            |                                        |                        |                            |         |                                                                                 |
| Avg. Numb                  | per of vehicles p                      | er day:                |                            | 195     |                                                                                 |
| -                          |                                        |                        |                            |         | calculated per Applicant da                                                     |
| Ava. Numb                  | er of work days                        | s per month:           |                            | 22      | VMT/period: 13533715                                                            |
|                            |                                        | •                      | vehicles per month:        | 4290    |                                                                                 |
| Number of                  | work months:                           |                        |                            | 14.22   | adjusted for precip events                                                      |
|                            | Work months.                           | Total vehicle          | es per const period:       | 61003.8 |                                                                                 |
|                            |                                        |                        |                            | 01005.0 |                                                                                 |
|                            | Calc 1<br>Calc 2                       | PM10<br>0.022<br>4.217 |                            |         |                                                                                 |
|                            | Calc 3                                 | 0.0007 lb/             | ∕VMT                       |         |                                                                                 |
|                            | Emissions<br>Ibs/period<br>tons/period |                        | PM 2.5<br>1539.51<br>0.770 |         |                                                                                 |

EPA, AP-42, Section 13.2.1, March 2006, updated 9/2008.

PM2.5 fraction of PM10 per CARB CEIDARs is 0.169

\*\*\* Note: avg roundtrip distance traveled by delivery or worker vehicles on freeways (I-5) and other State Routes in the project area.

Vehicles per day: worker + deliveries+staff support vehicles (averages)

# ONSITE UNPAVED ROAD FUGITIVE DUST

| Length of Unpaved Roads on Construction site:                                                                                                       |               |                  | 0.1                           | miles*                                                                                   |                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|-------------------------------|------------------------------------------------------------------------------------------|-------------------|--|--|
| Avg weight of construction                                                                                                                          | vehiculareo   | uipment on road: | 4.1                           | tons (range 2                                                                            | - 42 tons)        |  |  |
| Road surface silt content:<br>Road surface material moisture content:                                                                               |               |                  | 8.5<br>5                      | % (range 1.8 - 35%)<br>% (range 0.03 - 13%)                                              |                   |  |  |
| Particle size multiplier fact                                                                                                                       | ors:          | PM10<br>PM2.5    | k<br>1.5<br>0.15              | a<br>0.9<br>0.9                                                                          | b<br>0.45<br>0.45 |  |  |
| C factors (brake and tire we                                                                                                                        | ear):         | PM10<br>PM2.5    | 0.00047<br>0.00036            | Ib/VMT<br>Ib/VMT                                                                         |                   |  |  |
| Avg construction vehicle speed on road:                                                                                                             |               |                  | 5                             | mph (range 5                                                                             | -55 mph)          |  |  |
| Avg number of construction vehicles per day:                                                                                                        |               |                  | 74                            | * *                                                                                      |                   |  |  |
| Number of construction work days per month:<br>Total vehicles per month:<br>Number of construction work months:<br>Total vehicles per const period: |               |                  | 22<br>1628<br>14.22<br>134396 | calculated per Applicant dat<br>VMT/period: 13439.6<br>adjusted for precipitation events |                   |  |  |
| Control reduction due to wa                                                                                                                         | atering, spee | • •              | <mark>80</mark><br>0.8<br>0.2 |                                                                                          |                   |  |  |
|                                                                                                                                                     |               |                  |                               |                                                                                          |                   |  |  |

EPA, AP-42, Section 13.2.2, March 2006

Soil Moisture; 5% avg

Soil silt content: 8.5% per AP-42 for construction site scraper routes

\*\* const equipment plus site support pickups plus

#### CONSTRUCTION PHASE - Truck Hauling/Delivery and Site Support Vehicle Emissions All Phases

| All Phases                      |              |               |            |            |                 |            |            |            |             |              |        |
|---------------------------------|--------------|---------------|------------|------------|-----------------|------------|------------|------------|-------------|--------------|--------|
| Delivery/Hauling Vehicle Use Ra | ates         |               |            | Emissio    | ons Factors (Ib | s/vmt)     |            |            |             |              |        |
| Delivery Roundtrip Distance:    | 0            | miles         | NOx        | CO         | VOC             | SOx        | PM10       | CO2        |             |              |        |
| Const Days per Period:          | 0            |               | 0.00133459 | 0.00037027 | 6.2834E-05      | 0.000025   | 1.0747E-05 | 2.91617689 | HDDT        |              |        |
| Avg Deliveries per Day:         | 0            |               | 0.00026191 | 0.00201574 | 3.9247E-05      | 0.000011   | 2.7302E-06 | 0.8745735  | MDGT        |              |        |
| Fraction of Deliveries-Diesel:  | 0.95         | HDDT          |            |            | Daily Emiss     | ions (lbs) |            |            |             |              |        |
| Fraction of Deliveries-Gas:     | 0.05         | MDGT          | NOx        | СО         | VOC             | SOx        | PM 10      | CO2        | PM 2.5      |              |        |
| Total Delivery VMT:             | 2481715      | per Applicant | 0.000      | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | HDDT         |        |
| Total Daily VMT-Diesel          | 0            |               | 0.000      | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | MDGT         |        |
| Total Daily VMT-Gasoline        | 0            |               |            | ٦          | ΓonsperCon      | st Period  |            |            |             |              |        |
| Total Period VMT-Diesel         | 2357629.25   | 5             | 1.573      | 0.436      | 0.074           | 0.029      | 0.013      | 3437.6     | 0.011       | HDDT         |        |
| Total Period VMT-Gasoline       | 124085.75    |               | 0.016      | 0.125      | 0.002           | 0.001      | 0.000      | 54.3       | 0.000       | MDGT         |        |
| Construction Site Support Vehic | de Use Rates | (LDTs)        |            |            | Daily Emissi    | ons, Ibs   |            |            |             |              |        |
| Gasoline Vehicle VMT Period:    | 75900        |               | NOx        | СО         | VOC             | SOx        | PM 10      | CO2        |             |              | PM 2.5 |
| Avg Daily Gasoline VMT:         | 300          |               | 0.0002232  | 0.00204313 | 3.6203E-05      | 0.000007   | 3.782E-06  | 0.55087942 | lbs/vmt*    | LDT gasoline |        |
| Avg Daily Diesel VMT:           | 0            |               | 0.0670     | 0.6129     | 0.0109          | 0.0021     | 0.0011     | 165.2638   | lbs/day     | gasoline     | 0.0007 |
| Total Phase Const Days:         | 240          |               |            |            |                 |            |            |            |             |              |        |
|                                 |              |               |            |            | Tonsper Co      | nst Period |            |            |             |              |        |
| Ref: EMFAC 2014, SJV APCD Ye    | ear 2023     |               | 0.0085     | 0.0775     | 0.0014          | 0.0003     | 0.0001     | 20.9       | tons/period | gasoline     | 0.0001 |
| LDT1-gas, MDV-gas, HDDT-dsl     |              |               |            |            |                 |            |            |            |             |              |        |
| See EF data in WSP Support Appe | andix        |               |            |            |                 |            |            |            |             |              |        |
|                                 |              |               |            |            |                 |            |            |            |             |              |        |

#### Notes \*\*\*

VMT for delivery/hauling for all vehicles includes: (1) materials deliveries to site, (2) materials removal from site, other VMT as specified below.

Support Vehicle VMT: best estimate at time of filing, 10 LDT (gasoline) at 30 VMT/day

CARB-CEIDARS, Updated Fractions for PM Profiles: PM2.5 = 0.991 of PM10 for Diesel Exhaust, and 0.998 for Gasoline Vehicles.

# CONSTRUCTION PHASE - Worker Travel - Emissions

|                                      |                  | •         |              |             | LDA-gas         |                     | 1, 104 2020   |             |        |
|--------------------------------------|------------------|-----------|--------------|-------------|-----------------|---------------------|---------------|-------------|--------|
| Worker Travel to Site                |                  |           |              |             | -               | n WSP Support /     | Appendix      |             |        |
| Avg Occupancy/Vehicle:               | 0                |           |              |             |                 |                     | ppondix       |             |        |
| Avg Roundtrip Distance, miles:       | 0.0              |           |              | Emissio     | ns Factors (Ibs | /VMT)               |               |             |        |
| Avg # of Worker Vehicles, per day:   | 0                |           | NOx          | CO          | VOC             | ŚOx                 | PM10          | CO2         |        |
| Avg Daily Worker VMT:                | 0                |           | 8.5075E-05   | 0.000810295 | 1.5737E-05      | 0.00006             | 0.000004      | 0.56063169  |        |
| Max # of Worker Vehicles, per day:   | 0                |           |              |             |                 |                     |               |             |        |
| Max Daily Worker VMT:                | 0                |           |              | Da          | aily Emissions  | s(lbs)              |               |             |        |
| Total Const Days:                    | 240              |           | NOx          | CO          | VOC             | SOx                 | PM10          | CO2         | PM2.5  |
| Total Const Period Worker VMT:       | 11052000         | Avg       | 0.00         | 0.00        | 0.00            | 0.00                | 0.00          | 0.00        | 0.00   |
| VMT data suppli                      | ed by Applicant. | -         |              |             |                 |                     |               |             |        |
|                                      |                  |           |              | То          | nsperConst      | Period              |               |             |        |
|                                      |                  | Avg       | 0.470        | 4.478       | 0.087           | 0.033               | 0.022         | 3098.1      | 0.000  |
| Worker Travel by Busing from Staging | Area             |           |              |             |                 |                     |               |             |        |
| Total Bus VMT/Const Period:          | 0                | Bus Round | d Trips/Day: | 0           | max             | Ref: SJVAPCD        | EMFAC 2014    | , Year 2025 |        |
| Avg Bus VMT/Const Day:               | 0                | Bus Occup | oancy/Trip:  | 0           |                 | All other buses-DSL |               |             |        |
| Max Bus VMT/Const Day:               | 0                |           |              |             |                 | See EF data in V    | WSP Support A | ppendix     |        |
|                                      |                  |           |              | Emissio     | ns Factors (Ibs | /VMT)               |               |             |        |
| # buses supplied by Applicant.       |                  |           | NOx          | CO          | VOC             | SOx                 | PM10          | CO2         |        |
|                                      |                  |           | 0.002933     | 0.00055     | 0.000105        | 0.000025            | 0.000007      | 2.661084    |        |
|                                      |                  |           |              | Da          | aily Emissions  | s (lbs)             |               |             |        |
|                                      |                  |           | NOx          | CO          | VOC             | SOx                 | PM 10         | CO2         | PM 2.5 |
|                                      |                  | Avg       | 0.00         | 0.00        | 0.00            | 0.00                | 0.00          | 0.00        | 0.00   |
|                                      |                  | Max       | 0.00         | 0.00        | 0.00            | 0.00                | 0.00          | 0.00        | 0.00   |
|                                      |                  |           |              |             |                 |                     |               |             |        |
|                                      |                  |           |              |             | Tonsper Co      |                     |               |             |        |
|                                      |                  | Avg       | 0.000        | 0.000       | 0.000           | 0.000               | 0.000         | 0.000       | 0.000  |

Ref: SJVAPCD EMFAC 2014, Year 2025

### **CONSTRUCTION PHASE - Trackout Emissions**

| Paved Road Length (miles):       | 0.1          | estimated rou   | undtrip trackout distance |                 |             |
|----------------------------------|--------------|-----------------|---------------------------|-----------------|-------------|
| Daily # of Vehicles:             | 74           |                 |                           |                 |             |
| Avg Vehicle Weight (tons):       | 6.8          |                 | PM 10                     | PM 2.5*         |             |
| Total Unadjusted VMT/day         | 7.4          |                 | 0.361                     |                 |             |
| Particle Size Multipliers        | PM10         |                 | 1.924                     |                 |             |
| Ib/VMT                           | 0.023        |                 | 0.002                     | 0.0004          | Ib/VMT      |
| C factor, Ib/VMT                 | 0.00047      |                 | 0.129                     | 0.0217          | lbs/day     |
| Road Sfc Silt Loading (g/m^2):   | 0.56         | local X 2       | 0.001                     | 0.0002          | tons/month  |
| # of Active Trackout Points:     | 1            | * *             | 0.02                      | 0.0034          | tons/period |
| Added Trackout Miles:            | PM10         |                 |                           |                 | -           |
| Trackout VMT/day:                | 44           |                 | Default Silt Load Val     | ues for Paved I | Road Types  |
| Final Adjusted VMT/day           | 52           |                 | Freeway                   | 0.02 g/m2       |             |
| Final Adjusted VMT/month         | 1140         |                 | Arterial                  | 0.036 g/m2      |             |
| Final Adjusted VMT/period        | 16205        |                 | Collector                 | 0.036 g/m2      |             |
| Construction days/month:         | 22           |                 | Local                     | 0.28 g/m2       |             |
| Adj. Construction months/period: | 14.22        |                 | Rural                     | 1.6 g/m2        |             |
| Control Applied to Trackout:     | Gravel entra | nce, metal clea | aning grates, water washi | ng, sweeping    |             |
| Control Efficiency, %            | 84           | 0.84            | Release Factor =          | 0.16            |             |

\* PM2.5 fraction of PM10 assumed to be 0.169 (CARB CEIDARS updated fraction values) for paved roads.

\*\* 1 controlled ingress/egress point is planned for site construction

EPA, AP-42, Section 13.2.1, Proposed revisions dated 9/2008.

Use silt loading factor from default values for road type if no site specific data is available.

Trackout effects approximately 0.05 mi. of roadway arriving and departing from the site access point.

Plant access road is already paved. Entrance will be gravelled with metal grates for take out control.

Vehicle count = delivery trucks plus site support trucks (see Unpaved Onsite tab)

Worker vehicles not counted for trackout, they will park on the site perimeter.

SGF 10

| 1                  | Tons/Per | iod  |      |      |       |         |       |        |
|--------------------|----------|------|------|------|-------|---------|-------|--------|
|                    |          |      |      |      |       | F       | -ug   | Fug    |
|                    | NOx      | CO   | VOC  | SOx  | PM 10 | CO2     | PM 10 | PM 2.5 |
| on-off site travel | 1.24     | 3.09 | 0.10 | 0.04 | 0.02  | 3602    | 5.76  | 1.02   |
| on-site equipment  | 3.13     | 4.01 | 0.69 | 0.01 | 0.11  | 1405    |       |        |
| Total              | 4.38     | 7.10 | 0.78 | 0.05 | 0.13  | 5007    | 5.76  | 1.02   |
| Months:            | 10.25    |      |      |      |       |         |       |        |
| Max Year Months:   | 10.25    |      |      |      |       |         |       |        |
| Total per Year:    | 4.38     | 7.10 | 0.78 | 0.05 | 0.13  | 5007.19 | 5.76  | 1.02   |

# CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

### Main Site Construction-SGF 10

### Assumptions:

WSP

Project:

1. The average engines employed in construction equipment use consumes fuel at a rate of:

Ref: EPA, NR-009b Publication, November 2002.

Ref: Sacramento County APCD Const. Program Data, V. 6.0.3, 3/2007.

Ref: EPA, NR-009c Publication, EPA 420-P-04-009, April 2004.

Ref: Niland Energy Project, IID, AFC Vol 2, App A.

Ref: South Coast AQMD PR XXI, Draft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03. The above noted references present fuel consumption values which range from 0.050 to 0.064 gal/hp-hr for diesel engines used in construction related equipment. The value of 0.060 gal/hp-hr was chosen as a reasonable upper mid-range value for construction diesel emissions calculations. For gasoline the mid-range value from SCAQMD of 0.11 gal/hp-hr was used.

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:               | 9<br>8<br>0.75 | months<br>hrs/day<br>years | Construction Totals: | 257.77778<br>2320<br>290 | hrs/month<br>hrs/const period<br>days/const period |
|-----------------------------------------|----------------|----------------------------|----------------------|--------------------------|----------------------------------------------------|
| 5. Anticipated Construction Start Year: |                | 2027                       | 7.                   | N2O EF die<br>N2O EF gas | sel, lb/gal: 0.000183<br>soline, lb/gal: 0.000164  |
| 6. Maximum anticipated equipment use    | month is:      | n/a                        |                      | CARB, Mar                | ndatory GHG Reporting Regulation pendix A, 2007.   |

Equipment types and use rates supplied by the Applicant.

|                               | Weighted<br>Average | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site | Total   | Total Hrs<br>per Const | Total<br>HP-Hrs |
|-------------------------------|---------------------|------------------------|-----------------|----------------------|---------|------------------------|-----------------|
| Equipment Category**          | HP                  | Project                | Hrs/day         | (each)               | Hrs/Day | Period                 | Period          |
| Aerial Lifts                  | 63                  | 1                      | 6               | 38                   | 6       | 228                    | 14364           |
| Air Compressors               | 78                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Bore-Drill Rigs               | 206                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cement Mixers                 | 9                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Concrete/Industrial Saws      | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cranes                        | 226                 | 1                      | 2               | 38                   | 2       | 76                     | 17176           |
| Crawler Tractors/Dozers       | 208                 | 3                      | 7               | 85                   | 21      | 1785                   | 371280          |
| Crushing/Processing Eq.       | 85                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Dumpers/Tenders/Water Trucks  | 16                  | 7                      | 7               | 78                   | 49      | 3822                   | 61152           |
| Excavators                    | 163                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Forklifts                     | 89                  | 8                      | 6               | 80                   | 48      | 3840                   | 341760          |
| Generator Sets                | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Graders                       | 175                 | 5                      | 7               | 43                   | 35      | 1505                   | 263375          |
| Off-Highway Tractors          | 123                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Off-Highway Trucks            | 400                 | 12                     | 7               | 88                   | 84      | 7392                   | 2956800         |
| Other Diesel Construction Eq. | 172                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other General Industrial Eq.  | 88                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other Material Handling Eq.   | 167                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pavers                        | 126                 | 1                      | 4               | 11                   | 4       | 44                     | 5544            |
| Paving Eq. Other              | 131                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Plate Compactors              | 8                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pressure Washers              | 13                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pumps                         | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Roller Compactors             | 81                  | 1                      | 7               | 17                   | 7       | 119                    | 9639            |
| Rough Terrain Forklifts       | 100                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tired Dozers           | 255                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tires Loaders          | 200                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Scrapers                      | 362                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Signal Boards                 | 6                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Skid Steer Loaders            | 65                  | 1                      | 7               | 75                   | 7       | 525                    | 34125           |
| Surfacing Eq.                 | 254                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Sweepers/Scrubbers            | 64                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Tractors                      | 98                  | 2                      | 7               | 98                   | 14      | 1372                   | 134456          |
| Front End Loaders (Single     | 98                  | 1                      | 7               | 33                   | 7       | 231                    | 22638           |
| Backhoes category)            | 98                  | 1                      | 4               | 63                   | 4       | 252                    | 24696           |
| Trenchers                     | 81                  | 3                      | 4               | 86                   | 12      | 1032                   | 83592           |
| Welders                       | 46                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Gasoline Const Eq.            | 175                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |

| diesel   | 0.06 | gal/hp-hr |
|----------|------|-----------|
| gasoline | 0.11 | gal/hp-hr |

\*\* diesel equipment unless otherwise specified.

| Const Period Diesel Hp-Hrs =     | 4340597 |      |
|----------------------------------|---------|------|
| Const Period Gasoline Hp-Hrs =   | 0       |      |
| Const Period Diesel Fuel Use =   | 260436  | gals |
| Const Period Gasoline Fuel Use = | 0       | gals |

Offroad equipment emissions factors derived SCAQMD Off Road database for 2025.

The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              |           |        | 2025 Equip | oment Emissi | ons Factors |          |         |
|----------------------------------------------|-----------|--------|------------|--------------|-------------|----------|---------|
| Equip.                                       | lbs/hr    | lbs/hr | lbs/hr     | lbs/hr       | lbs/hr      | lbs/hr   | lbs/hr  |
| Туре                                         | VOC (ROG) | CO     | NOx        | SOx          | PM10        | CO2      | CH4     |
| Aerial Lifts                                 | 0.0184    | 0.1646 | 0.1366     | 0.0004       | 0.0048      | 34.7217  | 0.0017  |
| Air Compressors                              | 0.0349    | 0.3027 | 0.2104     | 0.0007       | 0.0088      | 63.6073  | 0.0031  |
| Bore-Drill Rigs                              | 0.0428    | 0.5007 | 0.2864     | 0.0017       | 0.0042      | 164.8678 | 0.0039  |
| Cement Mixers                                | 0.0085    | 0.0414 | 0.0534     | 0.0001       | 0.0021      | 7.2481   | 0.0008  |
| Concrete/Industrial Saws                     | 0.0337    | 0.3706 | 0.2471     | 0.0007       | 0.0093      | 58.4637  | 0.0030  |
| Cranes                                       | 0.0681    | 0.3738 | 0.4223     | 0.0014       | 0.0143      | 128.6241 | 0.0061  |
| Crawler Tractors/Dozers                      | 0.0789    | 0.5065 | 0.4492     | 0.0013       | 0.0227      | 114.0167 | 0.0071  |
| Crushing/Processing Eq.                      | 0.0693    | 0.6187 | 0.3763     | 0.0015       | 0.0146      | 132.3077 | 0.0062  |
| Dumpers/Tenders                              | 0.0092    | 0.0314 | 0.0581     | 0.0001       | 0.0022      | 7.6244   | 0.0008  |
| Excavators                                   | 0.0559    | 0.5086 | 0.2269     | 0.0013       | 0.0086      | 119.5792 | 0.0050  |
| Forklifts                                    | 0.0236    | 0.2148 | 0.0860     | 0.0006       | 0.0025      | 54.3958  | 0.0021  |
| Generator Sets                               | 0.0288    | 0.2667 | 0.2329     | 0.0007       | 0.0081      | 60.9927  | 0.0026  |
| Graders                                      | 0.0676    | 0.5696 | 0.3314     | 0.0015       | 0.0147      | 132.7431 | 0.0061  |
| Off-Highway Tractors                         | 0.1134    | 0.6101 | 0.7291     | 0.0017       | 0.0331      | 151.3869 | 0.0102  |
| Off-Highway Trucks                           | 0.1140    | 0.5385 | 0.4769     | 0.0027       | 0.0142      | 260.0652 | 0.0103  |
| Other Diesel Construction Eq.                | 0.0442    | 0.3474 | 0.2021     | 0.0013       | 0.0069      | 122.5051 | 0.0040  |
| Other General Industrial Eq.                 | 0.0747    | 0.4438 | 0.3947     | 0.0016       | 0.0130      | 152.2399 | 0.0067  |
| Other Material Handling Eq.                  | 0.0696    | 0.4355 | 0.3844     | 0.0015       | 0.0124      | 141.1941 | 0.0063  |
| Pavers                                       | 0.0717    | 0.4745 | 0.3858     | 0.0009       | 0.0220      | 77.9326  | 0.0065  |
| Paving Eq. Other                             | 0.0548    | 0.3993 | 0.3281     | 0.0008       | 0.0190      | 68.9364  | 0.0049  |
| Plate Compactors                             | 0.0050    | 0.0263 | 0.0314     | 0.0001       | 0.0012      | 4.3138   | 0.0005  |
| Pressure Washers                             | 0.0066    | 0.0531 | 0.0561     | 0.0001       | 0.0019      | 9.4135   | 0.0006  |
| Pumps                                        | 0.0270    | 0.2617 | 0.2079     | 0.0006       | 0.0078      | 49.6066  | 0.0024  |
| Roller Compactors                            | 0.0410    | 0.3763 | 0.2501     | 0.0008       | 0.0122      | 67.0308  | 0.0037  |
| Rough Terrain Forklifts                      | 0.0396    | 0.4430 | 0.2336     | 0.0008       | 0.0090      | 70.2808  | 0.0036  |
| Rubber Tired Dozers                          | 0.1672    | 0.6620 | 1.0824     | 0.0025       | 0.0419      | 239.0780 | 0.0151  |
| Rubber Tires Loaders                         | 0.0559    | 0.4311 | 0.2835     | 0.0012       | 0.0121      | 108.6113 | 0.0050  |
| Scrapers                                     | 0.1495    | 0.7187 | 0.8387     | 0.0027       | 0.0335      | 262.4827 | 0.0135  |
| Signal Boards                                | 0.0111    | 0.0909 | 0.0718     | 0.0002       | 0.0029      | 16.6983  | 0.0010  |
| Skid Steer Loaders                           | 0.0186    | 0.2104 | 0.1354     | 0.0004       | 0.0019      | 30.2740  | 0.0017  |
| Surfacing Eq.                                | 0.0638    | 0.3590 | 0.3924     | 0.0017       | 0.0142      | 165.9715 | 0.0058  |
| Sweepers/Scrubbers                           | 0.0410    | 0.4840 | 0.2255     | 0.0009       | 0.0061      | 78.5433  | 0.0037  |
| Tractors                                     | 0.0336    | 0.3586 | 0.1857     | 0.0008       | 0.0059      | 66.7965  | 0.0030  |
| Front End Loaders                            | 0.0336    | 0.3586 | 0.1857     | 0.0008       | 0.0059      | 66.7965  | 0.0030  |
| Backhoes                                     | 0.0336    | 0.3586 | 0.1857     | 0.0008       | 0.0059      | 66.7965  | 0.0030  |
| Trenchers                                    | 0.0674    | 0.4085 | 0.3481     | 0.0007       | 0.0215      | 58.7116  | 0.0061  |
| Welders                                      | 0.0214    | 0.1745 | 0.1373     | 0.0003       | 0.0052      | 25.6027  | 0.0019  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771    | 0.3855 | 1.08       | 0.00014      | 0.1542      | 14.1565  | 0.00037 |
| (gasoline FFs: FPA OMS-AMD Report NR-009A    |           |        |            |              | 2016)       |          |         |

(gasoline EFs: EPA OMS-AMD Report NR-009A, 2-13-98, and SCAQMD EMFAC 2007 CEQA Tables, 2016.)

### Construction Period Emissions, lbs

| Fagin         VOC         CO         NOx         SOx         PMI         CO2         CCI4           Aricl Lifts         4         38         31         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                              |                              | U    | onstruction P | eriod Emissio | ons, ibs |      |         |          |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------|---------------|---------------|----------|------|---------|----------|------|
| Nor.         Nor. <th< th=""><th>Equip.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<> | Equip.                       |      |               |               |          |      |         |          |      |
| Acria Linis       4       38       31       0       1       7917       0         Air Compressors       0       0       0       0       0       0       0       0         Core Drill Rgs       0       0       0       0       0       0       0       0       0         Concrete Industrial Saws       0       0       0       0       0       0       0       0       0         Crusher Trators/Docrs       141       904       82       2       41       9775       0         Crushing Processing Eq.       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0<                                                                                                                                                                                                                                                                                                                             | Туре                         |      |               |               |          |      |         |          |      |
| Air Compressors       0       0       0       0       0       0       0         Bore-Drill Rigs       0       0       0       0       0       0       0       0         Concrect/Industrial Saws       0       0       0       0       0       0       0       0       0         Cranes       5       28       32       0       1       2975       0       1         Cravler Tractors/Dozrs       141       904       802       2       41       2052       13       10         Cravlers Tractors/Dozrs       10       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                             |                              | VOC  | СО            | NOx           | SOx      | PM10 | CO2     | CH4      |      |
| Bore-Drill Rigs         0         0         0         0         0         0         0         0           Cenered Matsrial Saws         0         0         0         0         0         0         0         0         0           Cravler Tractors/Dozrs         141         904         802         2         41         203520         13           Cravler Tractors/Dozrs         141         904         802         2         41         203520         13           Cravler Tractors/Dozrs         15         120         222         0         8         29140         3           Excavators         0         0         0         0         0         0         0         0           Generator Sets         0         0         0         0         0         0         0         0         0           Grafers         112         877         499         2         22         199778         9           Grafers         102         831         3525         20         105         122402         76           Other Graneral Industrial Eq.         0         0         0         0         0         0         0 <td>Aerial Lifts</td> <td>4</td> <td>38</td> <td>31</td> <td>0</td> <td>1</td> <td>7917</td> <td>0</td> <td></td>                                                                                        | Aerial Lifts                 | 4    | 38            | 31            | 0        | 1    | 7917    | 0        |      |
| Cement Micers         0         0         0         0         0         0         0         0           Concrete Industrial Saws         5         28         32         0         1         9775         0           Crawler Tractors/Doerrs         141         904         802         2         441         20320         13           Crawler Tractors/Doerrs         141         904         802         2         441         20320         13           Crawler Tractors/Doerrs         10         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                         | Air Compressors              | 0    | 0             | 0             | 0        | 0    | 0       | 0        |      |
| Concert/Industrial Saws         0         0         0         0         0         0         0           Cranes         5         28         32         0         1         9755         0           Crawler Tractors/Dozers         141         904         802         2         41         20350         13           Crushing/Processing Eq.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                | Bore-Drill Rigs              | 0    | 0             | 0             | 0        | 0    | 0       | 0        |      |
| Crases       5       28       32       0       1       9775       0         Crawler Tractors/Dozers       141       904       802       2       41       203520       13         Crawler Tractors/Dozers       35       120       222       0       8       29140       3         Exavators       0       0       0       0       0       0       0       0         Forkfiths       91       825       330       2       10       20880       8         Graders       0       0       0       0       0       0       0       0         Off-Highway Tractors       0       0       0       0       0       0       0       0         Off-Highway Tractors       0       0       0       0       0       0       0       0         Other General Industrial Eq.       0       0       0       0       0       0       0       0       0         Paving Eq. Other       0       0       0       0       0       0       0       0       0       0         Paving Eq. Other       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                     | Cement Mixers                | 0    | 0             | 0             | 0        | 0    | 0       | 0        |      |
| Crawler Tractory/Dozers       141       904       802       2       41       203520       13         Crushing/Processing Eq.       0       0       0       0       0       0       0       0       0         Dumpers/Tractors       35       120       222       0       8       29140       3         Exeavators       0       0       0       0       0       0       0       0         Generator Sets       0       0       0       0       0       0       0       0       0         Off-Highway Tractors       0       0       0       0       0       0       0       0       0       0         Other Discel Construction Eq.       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                          | Concrete/Industrial Saws     | 0    | 0             | 0             | 0        | 0    | 0       | 0        |      |
| Crushing/Processing Eq.       0       0       0       0       0       0       0         Dunpers/Tenders       35       120       222       0       8       29140       3         Ecavators       0       0       0       0       0       0       0       0       0         Forklins       91       825       330       2       100       208880       8         Generator Sets       0       0       0       0       0       0       0       0       0         Off-Highway Tractors       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <                                                                                                                                                                                                                                                                                                                                  | Cranes                       | 5    | 28            | 32            | 0        | 1    | 9775    | 0        |      |
| Dumper/Tenders         35         120         222         0         8         29140         3           Excavators         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                           | Crawler Tractors/Dozers      | 141  | 904           | 802           | 2        | 41   | 203520  | 13       |      |
| Excavors       0       0       0       0       0       0       0         Forklitis       91       825       330       2       10       208880       8         Generator Sets       102       857       499       2       22       199778       9         Off-Highway Tracks       843       3981       3525       20       105       1922402       76         Other Dissel Construction Eq.       0       0       0       0       0       0       0       0         Other Matcrial Handling Eq.       0       0       0       0       0       0       0       0       0         Pavers       3       21       17       0       1       3429       0       1         Paving Eq. Other       0       0       0       0       0       0       0       0         Paving Eq. Other       0       0       0       0       0       0       0       0       0         Paving Eq. Other       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                       | Crushing/Processing Eq.      | 0    | 0             | 0             | 0        | 0    | 0       | 0        |      |
| Forklifts91825330210208808Generator Sets000000000Graders1087499222197789Off-Highway Tractors00000000Off-Highway Tractors843398135252010519224076Other Discel Construction Eq.00000000Other General Industrial Eq.00000000Pavers3211701342900Pavers000000000Pavers000000000Pavers000000000Pavers000000000Pavers000000000Pavers000000000Pavers000000000Pavers000000000Pavers000000000Rough Erren Forkihs0000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dumpers/Tenders              | 35   | 120           | 222           | 0        | 8    | 29140   | 3        |      |
| Generator Sets         0         0         0         0         0         0         0           Graders         102         857         499         2         22         199778         9           Off-Highway Tractors         0         0         0         0         0         0         0         0           Off-Highway Tracks         843         3981         3525         20         105         1922402         76           Other General Industrial Eq.         0         0         0         0         0         0         0         0           Pavers         3         21         17         0         1         3429         0           Pavers         3         21         17         0         1         3429         0           Pavers         0         0         0         0         0         0         0         0           Paving Eq. Other         0         0         0         0         0         0         0         0           Paving Eq. Other         0         0         0         0         0         0         0         0         0           Reastherers         0 </td <td>Excavators</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>                                                                                                                 | Excavators                   | 0    | 0             | 0             | 0        | 0    | 0       | 0        |      |
| Graders         102         857         499         2         22         199778         9           Off-Highway Tractors         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                               | Forklifts                    | 91   | 825           | 330           | 2        | 10   | 208880  | 8        |      |
| Off-Highway Tractors       0       0       0       0       0       0       0         Off-Highway Tractors       843       3981       3525       20       105       1922402       76         Other Diesel Construction Eq.       0       0       0       0       0       0       0       0         Other General Industrial Eq.       0       0       0       0       0       0       0       0       0         Pavers       3       21       17       0       1       3429       0       0         Pavers f4, Other       0       0       0       0       0       0       0       0       0       0         Pressure Washers       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td< td=""><td>Generator Sets</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td></td<>                                                                                                                                                                                                 | Generator Sets               | 0    | 0             | 0             | 0        | 0    | 0       | 0        |      |
| Off-Highway Tracks         843         3981         3525         20         105         1922402         76           Other Diesel Construction Eq.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td>Graders</td> <td>102</td> <td>857</td> <td>499</td> <td>2</td> <td>22</td> <td>199778</td> <td>9</td> <td></td>                                                                                      | Graders                      | 102  | 857           | 499           | 2        | 22   | 199778  | 9        |      |
| Other Dises! Construction Eq.         0         0         0         0         0         0         0         0           Other General Industrial Eq.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                       | Off-Highway Tractors         | 0    | 0             | 0             | 0        | 0    | 0       | 0        |      |
| Other Dissel Construction Eq.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                | Off-Highway Trucks           | 843  | 3981          | 3525          | 20       | 105  | 1922402 | 76       |      |
| Other Material Handling Eq.0000000Pavers321170134290Paving Eq. Other0000000Pate Compactors0000000Pressure Washers00000000Pumps00000000Roller Compactors545300179770Rough Terrain Forklifts0000000Rubber Tired Dozers0000000Scrapers00000000Signal Boards00000000Skif Steer Loaders101107101158941Surfacing Eq.00000000Sweeper/Scrubbers00000000Trenchers70422359122605906Welders00000000Gasoline Const Eq.0000000TetakVOCCONOxSOxPM10PM2.5CO2CH4Mis Per const. period137080166263 <t< td=""><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 0    | 0             | 0             | 0        | 0    | 0       | 0        |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Other General Industrial Eq. | 0    | 0             | 0             | 0        | 0    | 0       | 0        |      |
| Pavers321170134290Paving Eq. Other00000000Plate Compactors0000000Pressure Washers0000000Pumps0000000Rough Terrain Forklifts000000Rubber Tires Loaders000000Signal Boards0000000Skid Steer Loaders0000000Signal Boards0000000Swepers/Scrubbers0000000Tractors4649225518916454Front End Loaders8834301168331Backhoes8904701168331Trenchers70422359122605906Welders00000000Gasoline Const Eq.0000000123Ibs per const, period1370801662633022422.332793210123Ions per const, period074.03.10.0150.110.11<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Other Material Handling Eq.  | 0    | 0             | 0             | 0        | 0    | 0       | 0        |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | 3    | 21            | 17            | 0        | 1    | 3429    | 0        |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Paving Eq. Other             | 0    | 0             | 0             | 0        | 0    | 0       | 0        |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | 0    | 0             | 0             | 0        | 0    | 0       | 0        |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | 0    | 0             | 0             | 0        | 0    | 0       | 0        |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | 0    | 0             | 0             | 0        | 0    | 0       | 0        |      |
| Rough Terian Forklifts0000000Rubber Tired Dozers00000000Rubber Tires Loaders00000000Scrapers00000000Signal Boards00000000Skid Steer Loaders101107101158941Surfacing Eq.0000000Sweepers/Scrubbers0000000Tractors4649225518916454Front End Loaders8834301154301Backhoes8904701168331Trenchers70422359122605906Welders00000000Gasoline Const Eq.0000000123Ibs per const. period1370801662633022422.332793210123tons per const. period1370801662633022422.332793210123Average Ibs/day =4.727.621.60.1030.770.779631.760.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                            | 5    | 45            |               |          | 1    | 7977    | 0        |      |
| Rubber Tired Dozers0000000Rubber Tires Loaders00000000Scrapers00000000Signal Boards00000000Skid Steer Loaders101107101158941Surfacing Eq.0000000Sweepers/Scrubbers0000000Tractors4649225518916454Front End Loaders8834301154301Backhoes8904701168331Trenchers70422359122605906Welders00000000Gasoline Const Eq.000000123Ibs per const. period13708016626330224222.332793210123tons per const. period0.74.03.10.0150.110.111396.600.06Average Ibs/day =4.727.621.60.1030.770.779631.760.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 0    |               |               | 0        | 0    |         | 0        |      |
| Rubber Tires Loaders         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                               |                              | 0    | 0             |               | 0        | 0    |         | 0        |      |
| Scrapers         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                                                                                                                                                                                                |                              | 0    |               |               |          |      |         |          |      |
| Signal Boards0000000Skid Steer Loaders101107101158941Surfacing Eq.0000000Sweepers/Scrubbers0000000Tractors4649225518916454Front End Loaders8834301154301Backhoes8904701168331Trenchers70422359122605906Welders0000000Gasoline Const Eq.000000Ibs per const. period13708016626330224222.332793210123tons per const. period0.74.03.10.0150.110.111396.600.06Average lbs/day =4.727.621.60.1030.770.779631.760.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0    | 0             |               |          | 0    |         | 0        |      |
| Skid Steer Loaders101107101158941Surfacing Eq.0000000Sweepers/Scrubbers0000000Tractors4649225518916454Front End Loaders8834301154301Backhoes8904701168331Trenchers70422359122605906Welders0000000Gasoline Const Eq.000000TotalsVOCCONOxSOxPM10PM2.5CO2CH4Ibs per const. period13708016626330224222.332793210123tons per const. period0.74.03.10.0150.110.111396.600.06Average Ibs/day =4.727.621.60.1030.770.779631.760.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | 0    |               |               |          |      |         | 0        |      |
| Surfacing Eq.       0       0       0       0       0       0       0       0         Sweepers/Scrubbers       0       0       0       0       0       0       0       0       0         Tractors       46       492       255       1       8       91645       4         Front End Loaders       8       83       43       0       1       15430       1         Backhoes       8       90       47       0       1       16833       1         Trenchers       70       422       359       1       22       60590       6         Welders       0       0       0       0       0       0       0       0         Gasoline Const Eq.       0       0       0       0       0       0       0       123         Ibs per const. period       1370       8016       6263       30       224       222.33       2793210       123         tons per const. period       0.7       4.0       3.1       0.015       0.11       0.11       1396.60       0.06         Average lbs/day =       4.7       27.6       21.6       0.103       0.77 <td< td=""><td>•</td><td>10</td><td></td><td></td><td>0</td><td>1</td><td>15894</td><td>1</td><td></td></td<>                                                                                                                                                                                     | •                            | 10   |               |               | 0        | 1    | 15894   | 1        |      |
| Sweepers/Scrubbers00000000Tractors4649225518916454Front End Loaders8834301154301Backhoes8904701168331Trenchers70422359122605906Welders0000000Gasoline Const Eq.000000TotalsVOCCONOxSOxPM10PM2.5CO2CH4Ibs per const. period13708016626330224222.332793210123tons per const. period0.74.03.10.0150.110.111396.600.06Average lbs/day =4.727.621.60.1030.770.779631.760.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |      |               |               |          | 0    |         | 0        |      |
| Tractors $46$ $492$ $255$ 18 $91645$ 4Front End Loaders883 $43$ 01 $15430$ 1Backhoes890 $47$ 01 $16833$ 1Trenchers70 $422$ $359$ 1 $22$ $60590$ 6Welders0000000Gasoline Const Eq.000000TotalsVOCCONOxSOxPM10PM2.5CO2CH4Ibs per const. period13708016 $6263$ $30$ $224$ $222.33$ $2793210$ $123$ tons per const. period0.74.0 $3.1$ $0.015$ $0.11$ $0.11$ $1396.60$ $0.06$ Average lbs/day =4.7 $27.6$ $21.6$ $0.103$ $0.77$ $0.77$ $9631.76$ $0.43$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |      |               |               |          |      |         | ÷        |      |
| Front End Loaders8834301154301Backhoes8904701168331Trenchers70422359122605906Welders0000000Gasoline Const Eq.000000TotalsVOCCONOxSOxPM10PM2.5CO2CH4Ibs per const. period13708016626330224222.332793210123tons per const. period0.74.03.10.0150.110.111396.600.06Average Ibs/day =4.727.621.60.1030.770.779631.760.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |      |               |               |          |      |         |          |      |
| Backhoes8904701168331Trenchers70422359122605906Welders0000000Gasoline Const Eq.000000TotalsVOCCONOxSOxPM10PM2.5CO2CH4Ibs per const. period13708016626330224222.332793210123tons per const. period0.74.03.10.0150.110.111396.600.06Average lbs/day =4.727.621.60.1030.770.779631.760.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |      |               |               |          |      |         | 1        |      |
| Trenchers $70$ $422$ $359$ 1 $22$ $60590$ 6Welders $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ Gasoline Const Eq. $0$ $0$ $0$ $0$ $0$ $0$ $0$ TotalsVOCCONOxSOxPM10PM2.5CO2CH4Ibs per const. period137080166263 $30$ $224$ $222.33$ $2793210$ $123$ tons per const. period $0.7$ $4.0$ $3.1$ $0.015$ $0.11$ $0.11$ $1396.60$ $0.06$ Average lbs/day = $4.7$ $27.6$ $21.6$ $0.103$ $0.77$ $0.77$ $9631.76$ $0.43$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |      |               |               |          |      |         | 1        |      |
| Welders       0       0       0       0       0       0       0       0       0         Gasoline Const Eq.       Totals       VOC       CO       NOx       SOx       PM10       PM2.5       CO2       CH4         Ibs per const. period       1370       8016       6263       30       224       222.33       2793210       123         It cons per const. period       0.7       4.0       3.1       0.015       0.11       0.11       1396.60       0.06         Average lbs/day =       4.7       27.6       21.6       0.103       0.77       0.77       9631.76       0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |      |               |               | 1        |      |         | 6        |      |
| Gasoline Const Eq.       0       0       0       0       0       0       0       0         Totals       VOC       CO       NOx       SOx       PM10       PM2.5       CO2       CH4         Ibs per const. period       1370       8016       6263       30       224       222.33       2793210       123         tons per const. period       0.7       4.0       3.1       0.015       0.11       0.11       1396.60       0.06         Average lbs/day =       4.7       27.6       21.6       0.103       0.77       0.77       9631.76       0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |      |               |               | 0        |      |         |          |      |
| TotalsVOCCONOxSOxPM10PM2.5CO2CH4lbs per const. period13708016626330224222.332793210123tons per const. period0.74.03.10.0150.110.111396.600.06Average lbs/day =4.727.621.60.1030.770.779631.760.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |      |               |               |          |      |         |          |      |
| lbs per const. period13708016626330224222.332793210123tons per const. period $0.7$ $4.0$ $3.1$ $0.015$ $0.11$ $0.11$ $1396.60$ $0.06$ Average lbs/day = $4.7$ $27.6$ $21.6$ $0.103$ $0.77$ $0.77$ $9631.76$ $0.43$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Casonic Const Eq.            | U    | 0             | 0             | 0        | U    | 0       | U        |      |
| lbs per const. period13708016626330224222.332793210123tons per const. period $0.7$ $4.0$ $3.1$ $0.015$ $0.11$ $0.11$ $1396.60$ $0.06$ Average lbs/day = $4.7$ $27.6$ $21.6$ $0.103$ $0.77$ $0.77$ $9631.76$ $0.43$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Totale                       | VOC  | CO            | NOv           | SOv      | PM10 | PM2 5   | $CO^{2}$ | СН4  |
| tons per const. period $0.7$ $4.0$ $3.1$ $0.015$ $0.11$ $0.11$ $1396.60$ $0.06$ Average lbs/day = $4.7$ $27.6$ $21.6$ $0.103$ $0.77$ $0.77$ $9631.76$ $0.43$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |      |               |               |          |      |         |          |      |
| Average lbs/day =         4.7         27.6         21.6         0.103         0.77         0.77         9631.76         0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |      |               |               |          |      |         |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |      |               |               |          |      |         |          |      |
| 1.0111111201111 - 0.09 + 4.01 - 5.15 - 0.01 - 0.11 - 0.11 - 1590.00 - 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • •                          |      |               |               |          |      |         |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Normalized IF I –            | 0.09 | 7.01          | 5.15          | 0.01     | 0.11 | 0.11    | 1390.00  | 0.00 |

CO2e, tons/period CO2e, tons/yr: N2O 48 0.02 0.16 0.02

1405.2 1405.2

CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

Other Assumptions and References:

1. Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08.

Optimum trench construction progress rate is 80m (260ft) per day.

Non-optimum trench construction progress rate is 30m (100 ft) per day.

An average progress of 180 ft/day is used where applicable.

2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness. A minimum assistance of 2 m/min (10 ft/min an (00 ft/m) may used where analyzed to  $f_{10}$  m/min (10 ft/min and  $f_{10}$  ft/m) may used where analyzed to  $f_{10}$  m/min (10 ft/min and  $f_{10}$  ft/m) may used where analyzed to  $f_{10}$  m/min (10 ft/min and  $f_{10}$  ft/m) may used where analyzed to  $f_{10}$  m/min (10 ft/min and  $f_{10}$  ft/m) may used where  $f_{10}$  m/min (10 ft/min and  $f_{10}$  ft/m) may used where  $f_{10}$  m/min (10 ft/min and  $f_{10}$  ft/m) may used where  $f_{10}$  m/min (10 ft/min and  $f_{10}$  ft/m) may used where  $f_{10}$  m/min (10 ft/min and  $f_{10}$  ft/m) may used where  $f_{10}$  m/min (10 ft/min and  $f_{10}$  ft/m) may used where  $f_{10}$  m/min (10 ft/min and  $f_{10}$  ft/m) may used where  $f_{10}$  m/min (10 ft/min and  $f_{10}$  ft/m) may used where  $f_{10}$  m/min (10 ft/min and  $f_{10}$  ft/m) may used where  $f_{10}$  m/min (10 ft/min and  $f_{10}$  ft/m) may used where  $f_{10}$  m/min (10 ft/min and  $f_{10}$  ft/m) m/min (10 ft/min and  $f_{10}$  ft/min (10 ft/mi

A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable.

The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr.

- Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001.
- 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.
- 4. Construction schedule note: applicant data indicates a construction work day period of 8 hours
  - The equipment use rates provided by the applicant are consistent with an 8 hour workday.
- 5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.

| CONSTRUCTIO        |                |                      |                    |                |                      |                  |                 |        |
|--------------------|----------------|----------------------|--------------------|----------------|----------------------|------------------|-----------------|--------|
| MRILevel 2 An      |                | -                    |                    |                | Acres                | 1956             |                 |        |
| Acres Subject to   |                |                      |                    |                |                      | 195.6            |                 |        |
| Max Acres Subje    |                |                      | •                  | day of this pl | nase:                | 14.7             | note (10)       |        |
| Emissions Factor   |                | ,                    |                    |                |                      | 0.12             |                 |        |
| PM2.5 fraction of  | fPM10 (per     | CARB CEIDARS         | S Profiles):       |                |                      | 0.21             |                 |        |
| Activity Levels:   |                | Hrs/Day:             |                    |                |                      | 8                |                 |        |
|                    |                | Days/Wk:             |                    |                |                      | 5                |                 |        |
|                    |                | Days/Month:          | Applicant Data     |                |                      | 22               |                 |        |
|                    | Phase Const    | Period, Months:      |                    |                |                      | 10.25            | 0.85            | years  |
|                    | Phase Co       | nst Period, Days:    |                    |                |                      | 225.5            |                 |        |
| Wet Season Adj     | ustment:       | (Per A P-42, Se      | ction 13.2.2, Figu | re 13.2.2-1, 1 | 2/03 or CalEEMo      | d, Appendix D,   | Table 1.1.)     |        |
| N                  | /lean#days/y   | /earwithrain>=       | 0.01 inch:         |                |                      | 40               |                 |        |
| Ν                  | /lean # month  | ns/yrwithrain>=      | 0.01 inch:         |                |                      | 1.33             |                 |        |
| A                  | djusted Con    | st Period, Months    | 5.                 |                |                      | 9.11             |                 |        |
| A                  | djusted Con    | st Period, Days:     |                    |                |                      | 191              |                 |        |
|                    | -              | ·                    |                    |                |                      |                  |                 |        |
| Controlsfor Fug    | gitive Dust:   |                      | Pro                | posed wateri   | ng cycle:            | 3                | times per day   |        |
|                    | -              |                      |                    | -              |                      |                  |                 |        |
| 3 watering cycles  | /8 hour cons   | truction shift yield | ds a 68% reductio  | n, use 68% fc  | or non-desert sites. | (11)(12)         |                 |        |
| Speed control of   | onsite const t | raffic to <15 mph    | yields a 40-70%    | reduction (us  | e 50% control as o   | conservative for | site). (11)(12) |        |
|                    |                | Calculated %         | control based on i | mitigations pr | oposed:              | 84               | % control       |        |
|                    |                | Conservative co      | ontrol % used for  | emissions esti | imates:              | 84               | % control       |        |
|                    |                |                      |                    |                |                      | 0.16             | releasefraction |        |
| Emissions: Cont    | rolled         | PM10                 | PM2.5              |                |                      |                  |                 |        |
| to                 | ons/month      | 0.282                | 0.059              |                |                      |                  |                 |        |
| to                 | ons/period     | 2.566                | 0.539              |                |                      |                  |                 |        |
| Max II             | bs/day         | 25.606               | 5.377              |                |                      |                  |                 |        |
|                    |                |                      |                    |                |                      |                  |                 |        |
| Soil Handling E    | missions(Cu    | ut and Fill): (2)    |                    |                |                      |                  |                 |        |
| Total cu.yds of so | oil handled:   |                      | 0                  |                | Mean annual w        | ind speed, mph:  | (8)             | 8.03   |
| Total tons of soil | handled:       |                      | 0.0                |                | Avg. Soil moist      | ure, %: (9)      |                 | 5      |
| Total days soil ha | andled:        |                      | 191                |                | Avg. Soil densi      | ty, tons/cu.yd:  |                 | 1.3    |
| Tons soil/day:     |                |                      | 0                  |                | k factor for PM      | 10:              |                 | 0.35   |
| Control Eff, wate  | ring,%         |                      | 80                 |                | Number of Dro        | ps per ton:      |                 | 4      |
|                    | -              | ase Fraction:        | 0.2                |                | Calc 1               | wind             |                 | 1.851  |
|                    |                |                      |                    |                | Calc 2               | moisture         |                 | 3.607  |
| Emissions:         | PM10           | PM2.5                |                    |                | Calc 3               | int              |                 | 0.513  |
| tons/period        | 0.000          | 0.000                |                    |                | Calc 4               | PM10             | lb/ton          | 0.0006 |
| tons/month         | 0.000          | 0.000                |                    |                | PM2.5 fraction       |                  |                 | 0.210  |
| max Ibs/day        | 0.000          | 0.000                |                    |                |                      |                  |                 |        |
| · <b>/</b>         |                |                      |                    |                |                      |                  |                 |        |
|                    |                | Emissions Tot        | als:               | PM 10          | PM 2.5               |                  |                 |        |
|                    |                |                      | tons/period        | 2.566          | 0.539                |                  |                 |        |
|                    |                |                      | -                  |                |                      |                  |                 |        |

### Methodology References:

(1) MRI Report, South Coast AQMD Project No. 95040, March 1996, Level 2 Analysis Procedure.

MRI Report uncontrolled factor of 0.11 tons/acre/month is based on 168 hours per month of const activity.

For an activity rate of ~180 hrs/month, the adjusted EF would be 0.12 tons/acre/month (uncontrolled).

(2) Soil Handling (Cut and Fill), EPA, AP-42, Section 13.2.4., 11/06.

(3) URBEMIS, Version 9.2.4, User's Manual Appendix A, page A-6.

(4) CARB Area Source Methodology, Section 7.7, 9/02.

(5) WRAP Fugitive Dust Handbook, 9/06.

(6) USEPA, AP-42, Section 13.2.3, 2/10.

(7) Estimating PM Emissions from Construction Operations, USEPA, MRI, 9/99.

(8) Wind speed data for Lemoore met station. Annual avg wind speed = 8.03 mph, % calms = 3.44%.

(9) Soil Moisture; 5% assumed avg value

(10) adjusted applicant value based on 7.5% of total acreage disturbed on any given day

(11) SCAQMD CEQA Handbook 1993.

(12) SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres, Fugitive Dust Mitigations, February 2005.

# OFFSITE PAVED ROAD FUGITIVE DUST EMISSIONS

(associated with delivery truck and worker vehicle traffic on I-5 and plant access road)

| Average mi    | leage for consti        | uction rela      | ted vehicles:            | NA      | miles, roundtrip distance***                                                    |
|---------------|-------------------------|------------------|--------------------------|---------|---------------------------------------------------------------------------------|
| Avg weight    | of vehicular eo         | quipment o       | n road:                  | 2.4     | tons (range 2 - 42 tons)                                                        |
| Road surface  | cesilt loading fa       | actor:           |                          | 0.015   | g/m2 (range 0.03 - 400 g/m2)<br>Limited Access Freeway >10,000 ADT <b>(I-5)</b> |
| Particlesiz   | e multiplier fac        | tors:            | PM10                     | 0.0022  | Ib/VMT                                                                          |
|               |                         |                  | PM2.5                    | 0.00054 |                                                                                 |
|               |                         |                  |                          |         |                                                                                 |
| C factors (b  | orake and tire w        | ear):            | PM10                     | 0.00047 | Ib/VMT                                                                          |
|               |                         |                  | PM2.5                    | 0.00036 | Ib/VMT                                                                          |
|               |                         |                  |                          |         |                                                                                 |
| Avg vehicle   | e speed on road         | :                |                          | 65      | mph                                                                             |
| As an Alessad |                         | an daun          |                          | 405     |                                                                                 |
| Avg. Numb     | er of vehicles p        | er day:          |                          | 195     | calculated per Applicant da                                                     |
| Ava Numb      | er of work days         | e nor month      |                          | 22      | VMT/period: 8104075                                                             |
| Avg. Numi     | G OF WORK days          | •                | otal vehicles per month: | 4290    | Viii 1/pa loa. 01040/3                                                          |
| Number of     | work months:            |                  |                          | 8       | adjusted for precip events                                                      |
|               |                         | Total ve         | hicles per const period: | 34320   |                                                                                 |
|               |                         |                  |                          |         |                                                                                 |
|               |                         | PM10             |                          |         |                                                                                 |
|               | Calc 1                  | 0.022            |                          |         |                                                                                 |
|               | Calc 2                  | 2.442            |                          |         |                                                                                 |
|               | Calc 3                  | 0.0006           | lb/VMT                   |         |                                                                                 |
|               | Emissions<br>Ibs/period | PM 10<br>4762.12 | PM 2.5<br>804.80         |         |                                                                                 |
|               | tons/period             | 2.381            | 0.402                    |         |                                                                                 |

EPA, AP-42, Section 13.2.1, March 2006, updated 9/2008.

PM2.5 fraction of PM10 per CARB CEIDARs is 0.169

\*\*\* Note: avg roundtrip distance traveled by delivery or worker vehicles on freeways (I-5) and other State Routes in the project area.

Vehicles per day: worker + deliveries+staff support vehicles (averages)

# ONSITE UNPAVED ROAD FUGITIVE DUST

| Length of Unpaved Roads                                   | on Constructi                                     | on site:                                                | 0.1                             | miles*                                 |                           |                           |        |
|-----------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|---------------------------------|----------------------------------------|---------------------------|---------------------------|--------|
| Avg weight of construction                                | vehiculareq                                       | uipment on road:                                        | 2.4                             | tons (range 2                          | - 42 tons)                |                           |        |
| Road surface silt content:<br>Road surface material mois  | sture content:                                    |                                                         | 8.5<br>5                        | % (range 1.8<br>% (range 0.03          | ,                         |                           |        |
| Particle size multiplier fact                             | ors:                                              | PM10<br>PM2.5                                           | k<br>1.5<br>0.15                | a<br>0.9<br>0.9                        | b<br>0.45<br>0.45         |                           |        |
| C factors (brake and tire w                               | ear):                                             | PM10<br>PM2.5                                           | 0.00047<br>0.00036              | Ib/VMT<br>Ib/VMT                       |                           |                           |        |
| Avg construction vehicle sp                               | beed on road:                                     |                                                         | 5                               | mph (range 5                           | -55 mph)                  |                           |        |
| Avg number of construction                                | n vehicles pe                                     | r day:                                                  | 74                              | * *                                    |                           |                           |        |
| Number of construction wo                                 | Total<br>ork months:                              | nonth:<br>vehicles per month:<br>cles per const period: | 22<br>1628<br>8<br><b>80452</b> | adjusted for p                         |                           | <b>/period:</b><br>events | 8045.2 |
| Control reduction due to wa                               |                                                   | d control, etc. =<br>Release Fraction =                 | 80<br>0.8<br>0.2                |                                        |                           |                           |        |
| Calc 1<br>Calc 2<br>Calc 3<br>Calc 4<br>Controlled Ib/VMT | PM10<br>0.733<br>0.904<br>0.995<br>0.995<br>0.199 | PM2.5<br>0.733<br>0.904<br>0.099<br>0.100<br>0.020      |                                 | Emissions<br>Ibs/period<br>tons/period | PM 10<br>1601.28<br>0.801 | PM 2.5<br>160.63<br>0.080 |        |

EPA, AP-42, Section 13.2.2, March 2006

Soil Moisture; 5% avg

Soil silt content: 8.5% per AP-42 for construction site scraper routes

\*\* const equipment plus site support pickups plus

#### CONSTRUCTION PHASE - Truck Hauling/Delivery and Site Support Vehicle Emissions All Phases

| All Phases                      |            |               |            |            |                 |            |            |            |             |              |        |
|---------------------------------|------------|---------------|------------|------------|-----------------|------------|------------|------------|-------------|--------------|--------|
| Delivery/Hauling Vehicle Use Ra | ates       |               |            | Emissio    | ons Factors (Ib | s/vmt)     |            |            |             |              |        |
| Delivery Roundtrip Distance:    | 0          | miles         | NOx        | CO         | VOC             | SOx        | PM10       | CO2        |             |              |        |
| Const Days per Period:          | 0          |               | 0.00133459 | 0.00037027 | 6.2834E-05      | 0.000025   | 1.0747E-05 | 2.91617689 | HDDT        |              |        |
| Avg Deliveries per Day:         | 0          |               | 0.00026191 | 0.00201574 | 3.9247E-05      | 0.000011   | 2.7302E-06 | 0.8745735  | MDGT        |              |        |
| Fraction of Deliveries-Diesel:  | 0.95       | HDDT          |            |            | Daily Emiss     | ions (lbs) |            |            |             |              |        |
| Fraction of Deliveries-Gas:     | 0.05       | MDGT          | NOx        | СО         | VOC             | SOx        | PM 10      | CO2        | PM 2.5      |              |        |
| Total Delivery VMT:             | 1489075    | per Applicant | 0.000      | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | HDDT         |        |
| Total Daily VMT-Diesel          | 0          |               | 0.000      | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | MDGT         |        |
| Total Daily VMT-Gasoline        | 0          |               |            | T          | Fonsper Con     | st Period  |            |            |             |              |        |
| Total Period VMT-Diesel         | 1414621.25 | 5             | 0.944      | 0.262      | 0.044           | 0.018      | 0.008      | 2062.6     | 0.006       | HDDT         |        |
| Total Period VMT-Gasoline       | 74453.75   |               | 0.010      | 0.075      | 0.001           | 0.000      | 0.000      | 32.6       | 0.000       | MDGT         |        |
|                                 |            | // <b></b> \  |            |            |                 |            |            |            |             |              |        |
| Construction Site Support Vehic |            | (LDTs)        |            |            | Daily Emissi    | -          |            |            |             |              |        |
| Gasoline Vehicle VMT Period:    | 75900      |               | NOx        | CO         | VOC             | SOx        | PM 10      | CO2        |             |              | PM 2.5 |
| Avg Daily Gasoline VMT:         | 300        |               | 0.0002232  | 0.00204313 | 3.6203E-05      | 0.000007   | 3.782E-06  | 0.55087942 | lbs/vmt*    | LDT gasoline |        |
| Avg Daily Diesel VMT:           | 0          |               | 0.0670     | 0.6129     | 0.0109          | 0.0021     | 0.0011     | 165.2638   | lbs/day     | gasoline     | 0.0007 |
| Total Phase Const Days:         | 240        |               |            |            |                 |            |            |            |             |              |        |
|                                 |            |               |            |            | Tonsper Co      | nst Period |            |            |             |              |        |
| Ref: EMFAC 2014, SJVAPCD Ye     | ear 2023   |               | 0.0085     | 0.0775     | 0.0014          | 0.0003     | 0.0001     | 20.9       | tons/period | gasoline     | 0.0001 |
| LDT1-gas, MDV-gas, HDDT-dsl     |            |               |            |            |                 |            |            |            |             |              |        |
| See EF data in WSP Support Appe | andix      |               |            |            |                 |            |            |            |             |              |        |
|                                 |            |               |            |            |                 |            |            |            |             |              |        |

#### Notes \*\*\*

VMT for delivery/hauling for all vehicles includes: (1) materials deliveries to site, (2) materials removal from site, other VMT as specified below.

Support Vehicle VMT: best estimate at time of filing, 10 LDT (gasoline) at 30 VMT/day

CARB-CEIDARS, Updated Fractions for PM Profiles: PM2.5 = 0.991 of PM10 for Diesel Exhaust, and 0.998 for Gasoline Vehicles.

# CONSTRUCTION PHASE - Worker Travel - Emissions

|                                      |                 | 15         |                    |                  | LDA-gas                               |                              | r, 1 cai 2020        |                    |               |
|--------------------------------------|-----------------|------------|--------------------|------------------|---------------------------------------|------------------------------|----------------------|--------------------|---------------|
| Worker Travel to Site                |                 |            |                    |                  | •                                     | WSP Support A                | Annendix             |                    |               |
| Avg Occupancy/Vehicle:               | 0               |            |                    |                  |                                       |                              |                      |                    |               |
| Avg Roundtrip Distance, miles:       | 0.0             |            |                    | Emissio          | ns Factors (Ibs/                      | VMT)                         |                      |                    |               |
| Avg # of Worker Vehicles, per day:   | 0               |            | NOx                | CO               | VOC                                   | SOx                          | PM10                 | CO2                |               |
| Avg Daily Worker VMT:                | 0               |            | 8.5075E-05         | 0.000810295      | 1.5737E-05                            | 0.000006                     | 0.000004             | 0.56063169         |               |
| Max # of Worker Vehicles, per day:   | 0               |            |                    |                  |                                       |                              |                      |                    |               |
| Max Daily Worker VMT:                | 0               |            |                    | Da               | aily Emissions                        | (lbs)                        |                      |                    |               |
| Total Const Days:                    | 240             |            | NOx                | CO               | VOC                                   | SOx                          | PM10                 | CO2                | PM2.5         |
| Total Const Period Worker VMT:       | 6615000         | Avg        | 0.00               | 0.00             | 0.00                                  | 0.00                         | 0.00                 | 0.00               | 0.00          |
| VMT data suppli                      | ed by Applicant |            |                    |                  |                                       |                              |                      |                    |               |
|                                      |                 |            |                    | То               | nsperConstF                           | Period                       |                      |                    |               |
|                                      |                 | Avg        | 0.281              | 2.680            | 0.052                                 | 0.020                        | 0.013                | 1854.3             | 0.000         |
| Worker Travel by Busing from Staging | Area            |            |                    |                  |                                       |                              |                      |                    |               |
| Total Bus VMT/Const Period:          | 0               | Bus Round  | l Trips/Day:       | 0                | max                                   | Ref:SJVAPCD                  | EMFAC 2014           | , Year 2025        |               |
| Avg Bus VMT/Const Day:               | 0               | Bus Occup  | ancy/Trip:         | 0                |                                       | All other buses-             | DSL                  |                    |               |
| Max Bus VMT/Const Day:               | 0               |            |                    |                  |                                       | See EF data in \             | WSP Support A        | ppendix            |               |
|                                      |                 |            |                    | Emissio          | ns Factors (Ibs/                      | VMT)                         |                      |                    |               |
| # buses supplied by Applicant.       |                 |            | NOx                | CO               | VOC                                   | SOx                          | PM10                 | CO2                |               |
|                                      |                 |            | 0.002933           | 0.00055          | 0.000105                              | 0.000025                     | 0.000007             | 2.661084           |               |
|                                      |                 |            |                    |                  | 0.000100                              | 0.000020                     |                      |                    |               |
|                                      |                 |            |                    |                  |                                       |                              |                      |                    |               |
|                                      |                 |            |                    | Da               | aily Emissions                        | (Ibs)                        |                      |                    | DM 2.5        |
|                                      |                 | ۵۷۵        | NOx                | Da<br>CO         | aily Emissions<br>VOC                 | (Ibs)<br>SOx                 | PM 10                | CO2                | <b>PM 2.5</b> |
|                                      |                 | Avg<br>May | <b>NOx</b><br>0.00 | Da<br>CO<br>0.00 | <b>iily Emissions<br/>VOC</b><br>0.00 | (Ibs)<br>SOx<br>0.00         | <b>PM 10</b><br>0.00 | <b>CO2</b><br>0.00 | 0.00          |
|                                      |                 | A∨g<br>Max | NOx                | Da<br>CO         | aily Emissions<br>VOC                 | (Ibs)<br>SOx                 | PM 10                | CO2                |               |
|                                      |                 | -          | <b>NOx</b><br>0.00 | Da<br>CO<br>0.00 | <b>iily Emissions<br/>VOC</b><br>0.00 | (Ibs)<br>SOx<br>0.00<br>0.00 | <b>PM 10</b><br>0.00 | <b>CO2</b><br>0.00 | 0.00          |

Ref: SJVAPCD EMFAC 2014, Year 2025

### **CONSTRUCTION PHASE - Trackout Emissions**

| Paved Road Length (miles):       | 0.1          | estimated rou   | undtrip trackout distance |                 |             |
|----------------------------------|--------------|-----------------|---------------------------|-----------------|-------------|
| Daily # of Vehicles:             | 74           |                 |                           |                 |             |
| Avg Vehicle Weight (tons):       | 6.8          |                 | PM 10                     | PM 2.5*         |             |
| Total Unadjusted VMT/day         | 7.4          |                 | 0.361                     |                 |             |
| Particle Size Multipliers        | PM10         |                 | 1.924                     |                 |             |
| Ib/VMT                           | 0.023        |                 | 0.002                     | 0.0004          | lb/VMT      |
| C factor, Ib/VMT                 | 0.00047      |                 | 0.129                     | 0.0217          | lbs/day     |
| Road Sfc Silt Loading (g/m^2):   | 0.56         | local X 2       | 0.001                     | 0.0002          | tons/month  |
| # of Active Trackout Points:     | 1            | **              | 0.01                      | 0.0019          | tons/period |
| Added Trackout Miles:            | PM10         |                 |                           |                 |             |
| Trackout VMT/day:                | 44           |                 | Default Silt Load Valu    | les for Paved I | Road Types  |
| Final Adjusted VMT/day           | 52           |                 | Freeway                   | 0.02 g/m2       |             |
| Final Adjusted VMT/month         | 1140         |                 | Arterial                  | 0.036 g/m2      |             |
| Final Adjusted VMT/period        | 9117         |                 | Collector                 | 0.036 g/m2      |             |
| Construction days/month:         | 22           |                 | Local                     | 0.28 g/m2       |             |
| Adj. Construction months/period: | 8.00         |                 | Rural                     | 1.6 g/m2        |             |
| Control Applied to Trackout:     | Gravel entra | nce, metal clea | aning grates, water washi | ng, sweeping    |             |
| Control Efficiency, %            | 84           | 0.84            | Release Factor $=$        | 0.16            |             |

\* PM2.5 fraction of PM10 assumed to be 0.169 (CARB CEIDARS updated fraction values) for paved roads.

\*\* 1 controlled ingress/egress point is planned for site construction

EPA, AP-42, Section 13.2.1, Proposed revisions dated 9/2008.

Use silt loading factor from default values for road type if no site specific data is available.

Trackout effects approximately 0.05 mi. of roadway arriving and departing from the site access point.

Plant access road is already paved. Entrance will be gravelled with metal grates for take out control.

Vehicle count = delivery trucks plus site support trucks (see Unpaved Onsite tab)

Worker vehicles not counted for trackout, they will park on the site perimeter.

SGF 11

|                             | Tons/Per | iod   |      |      |       |         |       |        |
|-----------------------------|----------|-------|------|------|-------|---------|-------|--------|
|                             |          |       |      |      |       | F       | -ug   | Fug    |
|                             | NOx      | CO    | VOC  | SOx  | PM 10 | CO2     | PM 10 | PM 2.5 |
| on-off site travel          | 1.66     | 4.11  | 0.13 | 0.05 | 0.03  | 4802    | 8.15  | 1.45   |
| on-site equipment           | 9.00     | 11.40 | 1.94 | 0.04 | 0.35  | 3712    |       |        |
| Total                       | 10.66    | 15.51 | 2.07 | 0.09 | 0.38  | 8514    | 8.15  | 1.45   |
| Months:<br>Max Year Months: |          |       |      |      |       |         |       |        |
| Total per Year:             | 9.47     | 13.79 | 1.84 | 0.08 | 0.34  | 7567.99 | 7.25  | 1.29   |

## CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

## Main Site Construction-SGF 11

## Assumptions:

WSP

Project:

1. The average engines employed in construction equipment use consumes fuel at a rate of:

Ref: EPA, NR-009b Publication, November 2002.

Ref: Sacramento County APCD Const. Program Data, V. 6.0.3, 3/2007.

Ref: EPA, NR-009c Publication, EPA 420-P-04-009, April 2004.

Ref: Niland Energy Project, IID, AFC Vol 2, App A.

Ref: South Coast AQMD PR XXI, Draft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03. The above noted references present fuel consumption values which range from 0.050 to 0.064 gal/hp-hr for diesel engines used in construction related equipment. The value of 0.060 gal/hp-hr was chosen as a reasonable upper mid-range value for construction diesel emissions calculations. For gasoline the mid-range value from SCAQMD of 0.11 gal/hp-hr was used.

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:                      | 17<br>8 | months<br>hrs/day | Construction Totals: | 249.41176<br>4240                                                      | hrs/const period  |  |
|------------------------------------------------|---------|-------------------|----------------------|------------------------------------------------------------------------|-------------------|--|
|                                                | 1.42    | years             |                      | 530                                                                    | days/const period |  |
| 5. Anticipated Construction Start Year:        |         | 2028              | 7.                   | N2O EF dies<br>N2O EF gas                                              |                   |  |
| 6. Maximum anticipated equipment use month is: |         | n/a               |                      | CARB, Mandatory GHG Reporting Regulation<br>Table 4, Appendix A, 2007. |                   |  |

Equipment types and use rates supplied by the Applicant.

|                               | Weighted<br>Average | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site | Total   | Total Hrs<br>per Const | Total<br>HP-Hrs |
|-------------------------------|---------------------|------------------------|-----------------|----------------------|---------|------------------------|-----------------|
| Equipment Category**          | HP                  | Project                | Hrs/day         | (each)               | Hrs/Day | Period                 | Period          |
| Aerial Lifts                  | 63                  | 1                      | 6               | 94                   | 6       | 564                    | 35532           |
| Air Compressors               | 78                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Bore-Drill Rigs               | 206                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cement Mixers                 | 9                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Concrete/Industrial Saws      | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cranes                        | 226                 | 1                      | 2               | 94                   | 2       | 188                    | 42488           |
| Crawler Tractors/Dozers       | 208                 | 3                      | 7               | 210                  | 21      | 4410                   | 917280          |
| Crushing/Processing Eq.       | 85                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Dumpers/Tenders/Water Trucks  | 16                  | 7                      | 7               | 192                  | 49      | 9408                   | 150528          |
| Excavators                    | 163                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Forklifts                     | 89                  | 8                      | 6               | 200                  | 48      | 9600                   | 854400          |
| Generator Sets                | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Graders                       | 175                 | 5                      | 7               | 108                  | 35      | 3780                   | 661500          |
| Off-Highway Tractors          | 123                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Off-Highway Trucks            | 400                 | 12                     | 7               | 220                  | 84      | 18480                  | 7392000         |
| Other Diesel Construction Eq. | 172                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other General Industrial Eq.  | 88                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other Material Handling Eq.   | 167                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pavers                        | 126                 | 1                      | 4               | 28                   | 4       | 112                    | 14112           |
| Paving Eq. Other              | 131                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Plate Compactors              | 8                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pressure Washers              | 13                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pumps                         | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Roller Compactors             | 81                  | 1                      | 7               | 42                   | 7       | 294                    | 23814           |
| Rough Terrain Forklifts       | 100                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tired Dozers           | 255                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tires Loaders          | 200                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Scrapers                      | 362                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Signal Boards                 | 6                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Skid Steer Loaders            | 65                  | 1                      | 7               | 188                  | 7       | 1316                   | 85540           |
| Surfacing Eq.                 | 254                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Sweepers/Scrubbers            | 64                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Tractors                      | 98                  | 2                      | 7               | 245                  | 14      | 3430                   | 336140          |
| Front End Loaders (single     | 98                  | 1                      | 7               | 83                   | 7       | 581                    | 56938           |
| Backhoes category)            | 98                  | 1                      | 4               | 158                  | 4       | 632                    | 61936           |
| Trenchers                     | 81                  | 10                     | 4               | 235                  | 40      | 9400                   | 761400          |
| Welders                       | 46                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Gasoline Const Eq.            | 175                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |

| ** diesel | equipment | unless | otherwise  | specified. |
|-----------|-----------|--------|------------|------------|
|           | quipinone |        | 0000000000 | Speeniea.  |

| Const Period Diesel Hp-Hrs =     | 11393608 |      |
|----------------------------------|----------|------|
| Const Period Gasoline Hp-Hrs =   | 0        |      |
| Const Period Diesel Fuel Use =   | 683616   | gals |
| Const Period Gasoline Fuel Use = | 0        | gals |

gal/hp-hr

gal/hp-hr

0.06

0.11

diesel

gasoline

Offroad equipment emissions factors derived SCAQMD Off Road database for 2025.

The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              |           |        | 2025 Equip | oment Emissi | ons Factors |          |         |
|----------------------------------------------|-----------|--------|------------|--------------|-------------|----------|---------|
| Equip.                                       | lbs/hr    | lbs/hr | lbs/hr     | lbs/hr       | lbs/hr      | lbs/hr   | lbs/hr  |
| Туре                                         | VOC (ROG) | CO     | NOx        | SOx          | PM10        | CO2      | CH4     |
| Aerial Lifts                                 | 0.0184    | 0.1646 | 0.1366     | 0.0004       | 0.0048      | 34.7217  | 0.0017  |
| Air Compressors                              | 0.0349    | 0.3027 | 0.2104     | 0.0007       | 0.0088      | 63.6073  | 0.0031  |
| Bore-Drill Rigs                              | 0.0428    | 0.5007 | 0.2864     | 0.0017       | 0.0042      | 164.8678 | 0.0039  |
| Cement Mixers                                | 0.0085    | 0.0414 | 0.0534     | 0.0001       | 0.0021      | 7.2481   | 0.0008  |
| Concrete/Industrial Saws                     | 0.0337    | 0.3706 | 0.2471     | 0.0007       | 0.0093      | 58.4637  | 0.0030  |
| Cranes                                       | 0.0681    | 0.3738 | 0.4223     | 0.0014       | 0.0143      | 128.6241 | 0.0061  |
| Crawler Tractors/Dozers                      | 0.0789    | 0.5065 | 0.4492     | 0.0013       | 0.0227      | 114.0167 | 0.0071  |
| Crushing/Processing Eq.                      | 0.0693    | 0.6187 | 0.3763     | 0.0015       | 0.0146      | 132.3077 | 0.0062  |
| Dumpers/Tenders                              | 0.0092    | 0.0314 | 0.0581     | 0.0001       | 0.0022      | 7.6244   | 0.0008  |
| Excavators                                   | 0.0559    | 0.5086 | 0.2269     | 0.0013       | 0.0086      | 119.5792 | 0.0050  |
| Forklifts                                    | 0.0236    | 0.2148 | 0.0860     | 0.0006       | 0.0025      | 54.3958  | 0.0021  |
| Generator Sets                               | 0.0288    | 0.2667 | 0.2329     | 0.0007       | 0.0081      | 60.9927  | 0.0026  |
| Graders                                      | 0.0676    | 0.5696 | 0.3314     | 0.0015       | 0.0147      | 132.7431 | 0.0061  |
| Off-Highway Tractors                         | 0.1134    | 0.6101 | 0.7291     | 0.0017       | 0.0331      | 151.3869 | 0.0102  |
| Off-Highway Trucks                           | 0.1140    | 0.5385 | 0.4769     | 0.0027       | 0.0142      | 260.0652 | 0.0103  |
| Other Diesel Construction Eq.                | 0.0442    | 0.3474 | 0.2021     | 0.0013       | 0.0069      | 122.5051 | 0.0040  |
| Other General Industrial Eq.                 | 0.0747    | 0.4438 | 0.3947     | 0.0016       | 0.0130      | 152.2399 | 0.0067  |
| Other Material Handling Eq.                  | 0.0696    | 0.4355 | 0.3844     | 0.0015       | 0.0124      | 141.1941 | 0.0063  |
| Pavers                                       | 0.0717    | 0.4745 | 0.3858     | 0.0009       | 0.0220      | 77.9326  | 0.0065  |
| Paving Eq. Other                             | 0.0548    | 0.3993 | 0.3281     | 0.0008       | 0.0190      | 68.9364  | 0.0049  |
| Plate Compactors                             | 0.0050    | 0.0263 | 0.0314     | 0.0001       | 0.0012      | 4.3138   | 0.0005  |
| Pressure Washers                             | 0.0066    | 0.0531 | 0.0561     | 0.0001       | 0.0019      | 9.4135   | 0.0006  |
| Pumps                                        | 0.0270    | 0.2617 | 0.2079     | 0.0006       | 0.0078      | 49.6066  | 0.0024  |
| Roller Compactors                            | 0.0410    | 0.3763 | 0.2501     | 0.0008       | 0.0122      | 67.0308  | 0.0037  |
| Rough Terrain Forklifts                      | 0.0396    | 0.4430 | 0.2336     | 0.0008       | 0.0090      | 70.2808  | 0.0036  |
| Rubber Tired Dozers                          | 0.1672    | 0.6620 | 1.0824     | 0.0025       | 0.0419      | 239.0780 | 0.0151  |
| Rubber Tires Loaders                         | 0.0559    | 0.4311 | 0.2835     | 0.0012       | 0.0121      | 108.6113 | 0.0050  |
| Scrapers                                     | 0.1495    | 0.7187 | 0.8387     | 0.0027       | 0.0335      | 262.4827 | 0.0135  |
| Signal Boards                                | 0.0111    | 0.0909 | 0.0718     | 0.0002       | 0.0029      | 16.6983  | 0.0010  |
| Skid Steer Loaders                           | 0.0186    | 0.2104 | 0.1354     | 0.0004       | 0.0019      | 30.2740  | 0.0017  |
| Surfacing Eq.                                | 0.0638    | 0.3590 | 0.3924     | 0.0017       | 0.0142      | 165.9715 | 0.0058  |
| Sweepers/Scrubbers                           | 0.0410    | 0.4840 | 0.2255     | 0.0009       | 0.0061      | 78.5433  | 0.0037  |
| Tractors                                     | 0.0336    | 0.3586 | 0.1857     | 0.0008       | 0.0059      | 66.7965  | 0.0030  |
| Front End Loaders                            | 0.0336    | 0.3586 | 0.1857     | 0.0008       | 0.0059      | 66.7965  | 0.0030  |
| Backhoes                                     | 0.0336    | 0.3586 | 0.1857     | 0.0008       | 0.0059      | 66.7965  | 0.0030  |
| Trenchers                                    | 0.0674    | 0.4085 | 0.3481     | 0.0007       | 0.0215      | 58.7116  | 0.0061  |
| Welders                                      | 0.0214    | 0.1745 | 0.1373     | 0.0003       | 0.0052      | 25.6027  | 0.0019  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771    | 0.3855 | 1.08       | 0.00014      | 0.1542      | 14.1565  | 0.00037 |
| (gasoline FFs: FPA OMS-AMD Report NR-009A    |           |        |            |              | 2016)       |          |         |

(gasoline EFs: EPA OMS-AMD Report NR-009A, 2-13-98, and SCAQMD EMFAC 2007 CEQA Tables, 2016.)

### Construction Period Emissions, lbs

| Туре                          |         |       |         |        |        |            |               |       |
|-------------------------------|---------|-------|---------|--------|--------|------------|---------------|-------|
| -J <b>F</b> -                 | VOC     | CO    | NOx     | SOx    | PM10   | <b>CO2</b> | CH4           |       |
| Aerial Lifts                  | 10      | 93    | 77      | 0      | 3      | 19583      | 1             |       |
| Air Compressors               | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Bore-Drill Rigs               | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Cement Mixers                 | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Concrete/Industrial Saws      | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Cranes                        | 13      | 70    | 79      | 0      | 3      | 24181      | 1             |       |
| Crawler Tractors/Dozers       | 348     | 2234  | 1981    | 6      | 100    | 502814     | 31            |       |
| Crushing/Processing Eq.       | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Dumpers/Tenders               | 87      | 295   | 547     | 1      | 21     | 71730      | 8             |       |
| Excavators                    | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Forklifts                     | 227     | 2062  | 826     | 6      | 24     | 522200     | 20            |       |
| Generator Sets                | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Graders                       | 256     | 2153  | 1253    | 6      | 56     | 501769     | 23            |       |
| Off-Highway Tractors          | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Off-Highway Trucks            | 2107    | 9951  | 8813    | 50     | 262    | 4806005    | 190           |       |
| Other Diesel Construction Eq. | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Other General Industrial Eq.  | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Other Material Handling Eq.   | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Pavers                        | 8       | 53    | 43      | 0      | 2      | 8728       | 1             |       |
| Paving Eq. Other              | 0       | 0     | 45<br>0 | 0      | 0      | 0          | 0             |       |
| Plate Compactors              | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Pressure Washers              | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Pumps                         | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Roller Compactors             | 12      | 111   | 0<br>74 | 0      | 4      | 19707      | 1             |       |
| Rough Terrain Forklifts       | 0       | 0     | 0       | 0      | 4<br>0 | 0          | 0             |       |
| Rubber Tired Dozers           | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Rubber Tires Loaders          | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Scrapers                      | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Signal Boards                 | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Skid Steer Loaders            | 24      | 277   | 178     | 1      | 3      | 39841      | 2             |       |
| Surfacing Eq.                 | 24<br>0 | 0     | 0       | 1 0    | 0      | 0          |               |       |
| Sweepers/Scrubbers            | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Tractors                      | 115     | 1230  | 637     | 3      | 20     | 229112     | 10            |       |
| Front End Loaders             | 20      | 208   | 108     | 0      | 3      | 38809      | 2             |       |
| Backhoes                      | 20      | 208   | 108     | 1      | 4      | 42215      | 2             |       |
| Trenchers                     | 634     | 3840  | 3272    | 1<br>7 | 202    | 551889     | 57            |       |
| Welders                       |         |       |         |        |        |            |               |       |
|                               | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Gasoline Const Eq.            | 0       | 0     | 0       | 0      | 0      | 0          | 0             |       |
| Totals                        | VOC     | СО    | NOx     | SOx    | PM10   | PM2.5      | CO2           | CH4   |
| lbs per const. period         | 3881    | 22804 | 18005   | 80     | 706    | 699.87     | 7378583       | 350   |
| tons per const. period        | 1.9     | 11.4  | 9.0     | 0.040  | 0.35   | 0.35       | 3689.29       | 0.17  |
| Average lbs/day =             | 7.3     | 43.0  | 34.0    | 0.150  | 1.33   | 1.32       | 13921.85      | 0.66  |
| Normalized TPY =              | 1.4     | 8.0   | 6.4     | 0.0    | 0.2    | 0.2        | 2604.2        | 0.1   |
|                               |         |       |         |        |        |            |               |       |
|                               |         |       |         |        |        |            | CO2e, tons/pe | eriod |

 CO2e, tons/period
 3712.3

 CO2e, tons/yr:
 2620.5

N2O 125 0.06 0.24 0.044

Other Assumptions and References:

Equip.

 Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08. Optimum trench construction progress rate is 80m (260ft) per day. Non-optimum trench construction progress rate is 30m (100 ft) per day. An average progress of 180 ft/day is used where applicable.

2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness.

A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable.

The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr.

- Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001.
- 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.
- 4. Construction schedule note: applicant data indicates a construction work day period of 8 hours
  - The equipment use rates provided by the applicant are consistent with an 8 hour workday.
- 5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.
- 6. CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

| CONSTRUCTI         | ON PHASE       | - SGF 11             |                    |                |                    |                  |                 |        |
|--------------------|----------------|----------------------|--------------------|----------------|--------------------|------------------|-----------------|--------|
| MRILevel 2 An      | alysis(Refs    | 1, 3-7)              |                    |                | Acres              | 2008             |                 |        |
| Acres Subject to   | Construction   | Disturbance Activ    | vites:             |                |                    | 200.8            |                 |        |
| Max Acres Subje    | ect to Constru | uction Disturbance   | Activites on any   | day of this pl | nase:              | 15.1             | note (10)       |        |
| Emissions Factor   | for PM10 U     | ncontrolled, tons/a  | cre/month:         |                |                    | 0.12             |                 |        |
| PM2.5 fraction o   | fPM10 (per     | CARB CEIDARS         | Profiles):         |                |                    | 0.21             |                 |        |
| Activity Levels:   |                | Hrs/Day:             |                    |                |                    | 8                |                 |        |
|                    |                | Days/Wk:             |                    |                |                    | 5                |                 |        |
|                    |                | Days/Month:          | Applicant Data     |                |                    | 22               |                 |        |
|                    | Phase Cons     | t Period, Months:    |                    |                |                    | 13.5             | 1.13            | years  |
|                    | Phase Co       | nst Period, Days:    |                    |                |                    | 297              |                 |        |
| Wet Season Adj     | ustment:       | (Per AP-42, Sec      | tion 13.2.2, Figu  | re 13.2.2-1, 1 | 2/03 or CalEEM     | od, Appendix D   | Table 1.1.)     |        |
| Ν                  | /lean # days/  | year with rain >= 0  | ).01 inch:         |                |                    | 40               |                 |        |
| Ν                  | lean # month   | hs∕yr with rain >= 0 | 0.01 inch:         |                |                    | 1.33             |                 |        |
| A                  | djusted Con    | st Period, Months:   |                    |                |                    | 12.00            |                 |        |
| A                  | djusted Con    | st Period, Days:     |                    |                |                    | 252              |                 |        |
|                    | -              | -                    |                    |                |                    |                  |                 |        |
| Controlsfor Fug    | gitive Dust:   |                      | Pro                | posed wateri   | ng cycle:          | 3                | times per day   |        |
|                    |                |                      |                    |                |                    |                  |                 |        |
| 3 watering cycles  | \$/8 hour cons | truction shift yield | sa68% reductio     | n, use 68% fo  | r non-desert sites | . (11)(12)       |                 |        |
| Speed control of   | onsite const t | traffic to <15 mph   | yields a 40-70%    | reduction (us  | e 50% control as   | conservative for | site). (11)(12) |        |
|                    |                | Calculated % c       | control based on r | mitigations pr | oposed:            | 84               | % control       |        |
|                    |                | Conservative co      | ntrol % used for   | emissions esti | mates:             | 84               | % control       |        |
|                    |                |                      |                    |                |                    | 0.16             | releasefraction |        |
| Emissions: Cont    | trolled        | PM10                 | PM2.5              |                |                    |                  |                 |        |
| te                 | ons/month      | 0.289                | 0.061              |                |                    |                  |                 |        |
| te                 | ons/period     | 3.470                | 0.729              |                |                    |                  |                 |        |
| Max II             | bs/day         | 26.287               | 5.520              |                |                    |                  |                 |        |
|                    |                |                      |                    |                |                    |                  |                 |        |
| Soil Handling E    | •              | ut and Fill): (2)    |                    |                |                    |                  |                 |        |
| Total cu.yds of so |                |                      | 0                  |                |                    | rind speed, mph  | : (8)           | 8.03   |
| Total tons of soil |                |                      | 0.0                |                | Avg. Soil mois     | ,                |                 | 5      |
| Total days soil ha | andled:        |                      | 252                |                | Avg. Soil densi    | • •              |                 | 1.3    |
| Tons soil/day:     |                |                      | 0                  |                | k factor for PM    |                  |                 | 0.35   |
| Control Eff, wate  | -              |                      | 80                 |                | Number of Dro      |                  |                 | 4      |
|                    | Rele           | ase Fraction:        | 0.2                |                | Calc 1             | wind             |                 | 1.851  |
|                    |                |                      |                    |                | Calc 2             | moisture         |                 | 3.607  |
| Emissions:         | PM10           | PM2.5                |                    |                | Calc 3             | int              |                 | 0.513  |
| tons/period        | 0.000          | 0.000                |                    |                | Calc 4             | PM10             | lb/ton          | 0.0006 |
| tons/month         | 0.000          | 0.000                |                    |                | PM2.5 fraction     | of PM10:         |                 | 0.210  |
| max Ibs/day        | 0.000          | 0.000                |                    |                |                    |                  |                 |        |
|                    |                | EmimionoTata         |                    |                | DM 2 5             |                  |                 |        |
|                    |                | EmissionsTota        |                    | PM 10          | PM 2.5             |                  |                 |        |
|                    |                |                      | tons/period        | 3.470          | 0.729              |                  |                 |        |
|                    |                |                      |                    |                |                    |                  |                 |        |

## Methodology References:

(1) MRI Report, South Coast AQMD Project No. 95040, March 1996, Level 2 Analysis Procedure.

MRI Report uncontrolled factor of 0.11 tons/acre/month is based on 168 hours per month of const activity.

For an activity rate of ~180 hrs/month, the adjusted EF would be 0.12 tons/acre/month (uncontrolled).

(2) Soil Handling (Cut and Fill), EPA, AP-42, Section 13.2.4., 11/06.

(3) URBEMIS, Version 9.2.4, User's Manual Appendix A, page A-6.

(4) CARB Area Source Methodology, Section 7.7, 9/02.

(5) WRAP Fugitive Dust Handbook, 9/06.

(6) USEPA, AP-42, Section 13.2.3, 2/10.

(7) Estimating PM Emissions from Construction Operations, USEPA, MRI, 9/99.

(8) Wind speed data for Lemoore met station. Annual avg wind speed = 8.03 mph, % calms = 3.44%.

(9) Soil Moisture; 5% assumed avg value

(10) adjusted applicant value based on 7.5% of total acreage disturbed on any given day

(11) SCAQMD CEQA Handbook 1993.

(12) SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres, Fugitive Dust Mitigations, February 2005.

## OFFSITE PAVED ROAD FUGITIVE DUST EMISSIONS

(associated with delivery truck and worker vehicle traffic on I-5 and plant access road)

| A verage mi  | leage for consti                       | ruction rela              | ted vehicles:              |        | NA      | miles, roundtrip distance***                                                    |
|--------------|----------------------------------------|---------------------------|----------------------------|--------|---------|---------------------------------------------------------------------------------|
| Avg weight   | t of vehicular eq                      | quipment o                | n road:                    |        | 4.1     | tons (range 2 - 42 tons)                                                        |
| Road surfac  | cesiltloadingfa                        | actor:                    |                            |        | 0.015   | g/m2 (range 0.03 - 400 g/m2)<br>Limited Access Freeway >10,000 ADT <b>(I-5)</b> |
| Particlesiz  | Particle size multiplier factors: PM10 |                           |                            |        | 0.0022  | Ib/VMT                                                                          |
|              | PM2.5                                  |                           |                            | 2.5    | 0.00054 | Ib/VMT                                                                          |
|              |                                        |                           |                            |        |         |                                                                                 |
| C factors (b | orake and tire w                       | ear):                     | PM                         |        | 0.00047 | Ib/VMT                                                                          |
|              |                                        |                           | PM                         | 2.5    | 0.00036 | Ib/VMT                                                                          |
|              |                                        |                           |                            |        |         |                                                                                 |
| Avgvehicle   | e speed on road                        | :                         |                            |        | 65      | mph                                                                             |
|              |                                        |                           |                            |        | 405     |                                                                                 |
| Avg. Numb    | per of vehicles p                      | er day:                   |                            |        | 195     |                                                                                 |
|              |                                        |                           |                            |        |         | calculated per Applicant da                                                     |
| Avg. Numb    | per of work days                       | •                         |                            |        | 22      | VMT/period: 10826972                                                            |
|              |                                        | I                         | otal vehicles per n        | nonth: | 4290    |                                                                                 |
| Number of    | work months:                           | <b>-</b>                  |                            |        | 15.11   | adjusted for precip events                                                      |
|              |                                        | lotal ve                  | hicles per const pe        | eriod: | 64821.9 |                                                                                 |
|              | Calc 1<br>Calc 2                       | PM10<br>0.022<br>4.217    |                            |        |         |                                                                                 |
|              | Calc 3                                 | 0.0007                    | Ib/VMT                     |        |         |                                                                                 |
|              | Emissions<br>Ibs/period<br>tons/period | PM 10<br>7287.61<br>3.644 | PM 2.5<br>1231.61<br>0.616 |        |         |                                                                                 |

EPA, AP-42, Section 13.2.1, March 2006, updated 9/2008.

PM2.5 fraction of PM10 per CARB CEIDARs is 0.169

\*\*\* Note: avg roundtrip distance traveled by delivery or worker vehicles on freeways (I-5) and other State Routes in the project area.

Vehicles per day: worker + deliveries+staff support vehicles (averages)

## ONSITE UNPAVED ROAD FUGITIVE DUST

| Length of Unpaved Roads                                   | 0.1                                               | miles*                                             |                      |                                        |                           |                           |  |
|-----------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------|----------------------------------------|---------------------------|---------------------------|--|
| Avg weight of construction                                | vehiculareq                                       | quipment on road:                                  | 4.1                  | tons (range 2 - 42 tons)               |                           |                           |  |
| Road surface silt content:<br>Road surface material mois  | 8.5<br>5                                          | % (range 1.8<br>% (range 0.03                      | ,                    |                                        |                           |                           |  |
| Particle size multiplier fact                             | ors:                                              | PM10<br>PM2.5                                      | k<br>1.5<br>0.15     | a<br>0.9<br>0.9                        | b<br>0.45<br>0.45         |                           |  |
| C factors (brake and tire w                               | 0.00047<br>0.00036                                | Ib/VMT<br>Ib/VMT                                   |                      |                                        |                           |                           |  |
| Avg construction vehicle s                                | 5                                                 | mph (range 5                                       | mph (range 5-55 mph) |                                        |                           |                           |  |
| Avg number of constructio                                 | 74                                                | * *                                                |                      |                                        |                           |                           |  |
| Number of construction wo                                 | 22<br>1628<br>15.11<br><b>80452</b><br>80         | VMT/period:<br>adjusted for precipitation events   |                      |                                        | 8045.2                    |                           |  |
| Control reduction due to w                                | 0.1                                               | Release Fraction =                                 | 0.8<br>0.2           |                                        |                           |                           |  |
| Calc 1<br>Calc 2<br>Calc 3<br>Calc 4<br>Controlled Ib/VMT | PM10<br>0.733<br>1.151<br>1.266<br>1.266<br>0.253 | PM2.5<br>0.733<br>1.151<br>0.127<br>0.127<br>0.025 |                      | Emissions<br>Ibs/period<br>tons/period | PM 10<br>2037.42<br>1.019 | PM 2.5<br>204.25<br>0.102 |  |

EPA, AP-42, Section 13.2.2, March 2006

Soil Moisture; 5% avg

Soil silt content: 8.5% per AP-42 for construction site scraper routes

\*\* const equipment plus site support pickups plus

## CONSTRUCTION PHASE - Truck Hauling/Delivery and Site Support Vehicle Emissions

| All Phases                     |                 | ,             |                      |            |                 |            |            |            |             |              |        |
|--------------------------------|-----------------|---------------|----------------------|------------|-----------------|------------|------------|------------|-------------|--------------|--------|
| Delivery/Hauling Vehicle Use I | Rates           |               |                      | Emissi     | ons Factors (It | os/vmt)    |            |            |             |              |        |
| Delivery Roundtrip Distance:   | 0               | miles         | NOx                  | CO         | VOC             | SOx        | PM10       | CO2        |             |              |        |
| Const Days per Period:         | 0               |               | 0.00133459           | 0.00037027 | 6.2834E-05      | 0.000025   | 1.0747E-05 | 2.91617689 | HDDT        |              |        |
| Avg Deliveries per Day:        | 0               |               | 0.00026191           | 0.00201574 | 3.9247E-05      | 0.000011   | 2.7302E-06 | 0.8745735  | MDGT        |              |        |
| Fraction of Deliveries-Diesel: | 0.95            | HDDT          |                      |            | Daily Emise     | ions (lbs) |            |            |             |              |        |
| Fraction of Deliveries-Gas:    | 0.05            | MDGT          | NOx                  | СО         | VOC             | SOx        | PM 10      | CO2        | PM 2.5      |              |        |
| Total Delivery VMT:            | 1985372         | per Applicant | 0.000                | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | HDDT         |        |
| Total Daily VMT-Diesel         | 0               |               | 0.000                | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | MDGT         |        |
| Total Daily VMT-Gasoline       | 0               |               |                      | -          | Tonsper Con     | st Period  |            |            |             |              |        |
| Total Period VMT-Diesel        | 1886103.4       |               | 1.259                | 0.349      | 0.059           | 0.024      | 0.010      | 2750.1     | 0.008       | HDDT         |        |
| Total Period VMT-Gasoline      | 99268.6         |               | 0.013                | 0.100      | 0.002           | 0.001      | 0.000      | 43.4       | 0.000       | MDGT         |        |
| Construction Site Support Ver  | nicle Use Rates | (LDTs)        | Daily Emissions, Ibs |            |                 |            |            |            |             |              |        |
| Gasoline Vehicle VMT Period:   | 75900           |               | NOx                  | СО         | VOC             | SOx        | PM 10      | CO2        |             |              | PM 2.5 |
| Avg Daily Gasoline VMT:        | 300             |               | 0.0002232            | 0.00204313 | 3.6203E-05      | 0.000007   | 3.782E-06  | 0.55087942 | bs/vmt*     | LDT gasoline |        |
| Avg Daily Diesel VMT:          | 0               |               | 0.0670               | 0.6129     | 0.0109          | 0.0021     | 0.0011     | 165.2638   | lbs/day     | gasoline     | 0.0007 |
| Total Phase Const Days:        | 240             |               |                      |            |                 |            |            |            |             |              |        |
|                                |                 |               |                      |            | Tonsper Co      | nst Period |            |            |             |              |        |
| Ref: EMFAC 2014, SJV APCD      | Year 2023       |               | 0.0085               | 0.0775     | 0.0014          | 0.0003     | 0.0001     | 20.9       | tons/period | gasoline     | 0.0001 |
| LDT1-gas, MDV-gas, HDDT-ds     | 5               |               |                      |            |                 |            |            |            |             |              |        |
| See EF data in WSP Support Ap  | pendix          |               |                      |            |                 |            |            |            |             |              |        |
|                                | pullin          |               |                      |            |                 |            |            |            |             |              |        |

#### Notes \*\*\*

VMT for delivery/hauling for all vehicles includes: (1) materials deliveries to site, (2) materials removal from site, other VMT as specified below.

Support Vehicle VMT: best estimate at time of filing, 10 LDT (gasoline) at 30 VMT/day

CARB-CEIDARS, Updated Fractions for PM Profiles: PM2.5 = 0.991 of PM10 for Diesel Exhaust, and 0.998 for Gasoline Vehicles.

## CONSTRUCTION PHASE - Worker Travel - Emissions

|                                                                     |                  |           |            |             | LDA-gas          | D LIVITAC 201    | +, 16a 2020 |             |        |
|---------------------------------------------------------------------|------------------|-----------|------------|-------------|------------------|------------------|-------------|-------------|--------|
| Worker Travel to Site                                               |                  |           |            |             | •                | WSP Support A    | Appendix    |             |        |
| Avg Occupancy/Vehicle:                                              | 0                |           |            |             |                  |                  |             |             |        |
| Avg Roundtrip Distance, miles:                                      | 0.0              |           |            | Emissio     | ns Factors (Ibs/ | VMT)             |             |             |        |
| Avg # of Worker Vehicles, per day:                                  | 0                |           | NOx        | CO          | voc`             | SOx              | PM10        | CO2         |        |
| Avg Daily Worker VMT:                                               | 0                |           | 8.5075E-05 | 0.000810295 | 1.5737E-05       | 0.000006         | 0.000004    | 0.56063169  |        |
| Max # of Worker Vehicles, per day:                                  | 0                |           |            |             |                  |                  |             |             |        |
| Max Daily Worker VMT:                                               | 0                |           |            | Da          | aily Emissions   | (lbs)            |             |             |        |
| Total Const Days:                                                   | 240              |           | NOx        | CO          | VOC              | SOx              | PM10        | CO2         | PM2.5  |
| Total Const Period Worker VMT:                                      | 8841600          | Avg       | 0.00       | 0.00        | 0.00             | 0.00             | 0.00        | 0.00        | 0.00   |
| VMT data supplie                                                    | ed by Applicant. |           |            |             |                  |                  |             |             |        |
|                                                                     |                  |           |            |             | nsperConstl      |                  |             |             |        |
|                                                                     |                  | Avg       | 0.376      | 3.582       | 0.070            | 0.027            | 0.018       | 2478.4      | 0.000  |
| Worker Troughy Dusing from Staring                                  | A # 00           |           |            |             |                  |                  |             |             |        |
| Worker Travel by Busing from Staging<br>Total Bus VMT/Const Period: | Area<br>0        |           | Trips/Day: | 0           | max              | Ref: SJVAPCD     |             | V or 2025   |        |
| Avg Bus VMT/Const Day:                                              | 0                | Bus Occup |            | 0           |                  | All other buses- |             | , 1021 2025 |        |
| Max Bus VMT/Const Day:                                              | 0                | BusOccup  | ансу/ттр.  | 0           |                  | See EF data in V |             | nnendiv     |        |
| Wax Dus VW1/Oons Day.                                               | 0                |           |            |             |                  |                  |             | ррамах      |        |
|                                                                     |                  |           |            | Emissio     | ns Factors (lbs/ | ′VMT)            |             |             |        |
| # buses supplied by Applicant.                                      |                  |           | NOx        | CO          | VOC              | SOx              | PM10        | CO2         |        |
|                                                                     |                  |           | 0.002933   | 0.00055     | 0.000105         | 0.000025         | 0.000007    | 2.661084    |        |
|                                                                     |                  |           |            |             |                  |                  |             |             |        |
|                                                                     |                  |           |            |             | aily Emissions   | • •              |             |             |        |
|                                                                     |                  |           | NOx        | СО          | VOC              | SOx              | PM 10       | CO2         | PM 2.5 |
|                                                                     |                  | Avg       | 0.00       | 0.00        | 0.00             | 0.00             | 0.00        | 0.00        | 0.00   |
|                                                                     |                  | Max       | 0.00       | 0.00        | 0.00             | 0.00             | 0.00        | 0.00        | 0.00   |
|                                                                     |                  |           |            |             | Tonsper Cor      | net Poriod       |             |             |        |
|                                                                     |                  | Avg       | 0.000      | 0.000       | 0.000            | 0.000            | 0.000       | 0.000       | 0.000  |
|                                                                     |                  | Avy       | 0.000      | 0.000       | 0.000            | 0.000            | 0.000       | 0.000       | 0.000  |

Ref: SJVAPCD EMFAC 2014, Year 2025

#### **CONSTRUCTION PHASE - Trackout Emissions**

| Paved Road Length (miles):       | 0.1          | estimated rou   | undtrip trackout distance | )               |             |
|----------------------------------|--------------|-----------------|---------------------------|-----------------|-------------|
| Daily # of Vehicles:             | 74           |                 |                           |                 |             |
| Avg Vehicle Weight (tons):       | 6.8          |                 | PM 10                     | PM 2.5*         |             |
| Total Unadjusted VMT/day         | 7.4          |                 | 0.361                     |                 |             |
| Particle Size Multipliers        | PM10         |                 | 1.924                     |                 |             |
| Ib/VMT                           | 0.023        |                 | 0.002                     | 0.0004          | Ib/VMT      |
| C factor, Ib/VMT                 | 0.00047      |                 | 0.129                     | 0.0217          | lbs/day     |
| Road Sfc Silt Loading (g/m^2):   | 0.56         | local X 2       | 0.001                     | 0.0002          | tons/month  |
| # of Active Trackout Points:     | 1            | **              | 0.02                      | 0.0036          | tons/period |
| Added Trackout Miles:            | PM10         |                 |                           |                 |             |
| Trackout VMT/day:                | 44           |                 | Default Silt Load Val     | ues for Paved I | Road Types  |
| Final Adjusted VMT/day           | 52           |                 | Freeway                   | 0.02 g/m2       |             |
| Final Adjusted VMT/month         | 1140         |                 | Arterial                  | 0.036 g/m2      |             |
| Final Adjusted VMT/period        | 17219        |                 | Collector                 | 0.036 g/m2      |             |
| Construction days/month:         | 22           |                 | Local                     | 0.28 g/m2       |             |
| Adj. Construction months/period: | 15.11        |                 | Rural                     | 1.6 g/m2        |             |
| Control Applied to Trackout:     | Gravel entra | nce, metal clea | ning grates, water wash   | ing, sweeping   |             |
| Control Efficiency, %            | 84           | 0.84            | Release Factor =          | 0.16            |             |

\* PM2.5 fraction of PM10 assumed to be 0.169 (CARB CEIDARS updated fraction values) for paved roads.

\*\* 1 controlled ingress/egress point is planned for site construction

EPA, AP-42, Section 13.2.1, Proposed revisions dated 9/2008.

Use silt loading factor from default values for road type if no site specific data is available.

Trackout effects approximately 0.05 mi. of roadway arriving and departing from the site access point.

Plant access road is already paved. Entrance will be gravelled with metal grates for take out control.

Vehicle count = delivery trucks plus site support trucks (see Unpaved Onsite tab)

Worker vehicles not counted for trackout, they will park on the site perimeter.

SGF 12

|                             | Tons/Per | iod  |      |      |       |         |       |        |
|-----------------------------|----------|------|------|------|-------|---------|-------|--------|
|                             |          |      |      |      |       |         |       |        |
|                             | NOx      | CO   | VOC  | SOx  | PM 10 | CO2     | PM 10 | PM 2.5 |
| on-off site travel          | 0.83     | 2.10 | 0.07 | 0.03 | 0.01  | 2408    | 5.19  | 0.90   |
| on-site equipment           | 3.13     | 4.01 | 0.69 | 0.01 | 0.11  | 1405    |       |        |
| Total                       | 3.96     | 6.11 | 0.75 | 0.04 | 0.13  | 3813    | 5.19  | 0.90   |
| Months:<br>Max Year Months: |          |      |      |      |       |         |       |        |
| Total per Year:             | 3.44     | 5.31 | 0.65 | 0.04 | 0.11  | 3315.86 | 4.51  | 0.78   |

## CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

## WSP Main Site Construction-SGF 12

## Assumptions:

Project:

1. The average engines employed in construction equipment use consumes fuel at a rate of:

Ref: EPA, NR-009b Publication, November 2002.

Ref: Sacramento County APCD Const. Program Data, V. 6.0.3, 3/2007.

Ref: EPA, NR-009c Publication, EPA 420-P-04-009, April 2004.

Ref: Niland Energy Project, IID, AFC Vol 2, App A.

Ref: South Coast AQMD PR XXI, Draft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03. The above noted references present fuel consumption values which range from 0.050 to 0.064 gal/hp-hr for diesel engines used in construction related equipment. The value of 0.060 gal/hp-hr was chosen as a reasonable upper mid-range value for construction diesel emissions calculations. For gasoline the mid-range value from SCAQMD of 0.11 gal/hp-hr was used.

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:                                                                                        | 14<br>8<br>1.17 | months<br>hrs/day<br>years | Construction Totals: | 180<br>2520<br>315 | hrs/month<br>hrs/const period<br>days/const period                                                         |
|------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------|----------------------|--------------------|------------------------------------------------------------------------------------------------------------|
| <ul><li>5. Anticipated Construction Start Year:</li><li>6. Maximum anticipated equipment use month is:</li></ul> |                 | 2029<br>n/a                | 7.                   | CARB, Ma           | esel, lb/gal: 0.000183<br>soline, lb/gal: 0.000164<br>ndatory GHG Reporting Regulation<br>opendix A, 2007. |

Equipment types and use rates supplied by the Applicant.

|                                                | Weighted<br>Average<br>HP | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site | Total   | Total Hrs<br>per Const<br>Period | Total<br>HP-Hrs<br>Period |
|------------------------------------------------|---------------------------|------------------------|-----------------|----------------------|---------|----------------------------------|---------------------------|
| Equipment Category**<br>Aerial Lifts           | 63                        | Project                | Hrs/day         | (each)<br>38         | Hrs/Day | 228                              | 14364                     |
|                                                |                           | 1                      | 6<br>0          | 38<br>0              | 6<br>0  | 228                              |                           |
| Air Compressors<br>Bore-Drill Rigs             | 206                       | 0                      | 0               | 0                    | 0       | 0                                | 0<br>0                    |
| Cement Mixers                                  | 200                       | 0                      | 0               | 0                    | 0       | 0                                | 0                         |
| Concrete/Industrial Saws                       | 81                        | 0                      | 0               | 0                    | 0       | 0                                | 0                         |
| Cranes                                         | 226                       | 1                      | 2               | 38                   | 2       | 0<br>76                          | 17176                     |
| Crawler Tractors/Dozers                        | 208                       | 3                      | 2<br>7          | 85                   | 21      | 1785                             | 371280                    |
| Crushing/Processing Eq.                        | 85                        | 0                      | 0               | 0                    | 0       | 0                                | 0                         |
| Dumpers/Tenders/Water Trucks                   |                           | 0<br>7                 | 0<br>7          | 0<br>78              | 0<br>49 | 3822                             | 61152                     |
| Excavators                                     | 163                       | 0                      | 0               | 0                    | 49<br>0 | 0                                | 0                         |
| Forklifts                                      | 89                        | 8                      | 6               | 80                   | 48      | 3840                             | 341760                    |
| Generator Sets                                 | 89<br>84                  | 8<br>0                 | 0               | 80<br>0              | 40      | 0                                | 0                         |
| Graders                                        | 84<br>175                 | 5                      | 0<br>7          | 0<br>43              | 35      | 1505                             | 263375                    |
| Off-Highway Tractors                           | 173                       | 0                      | 0               | 43<br>0              | 55<br>0 | 0                                | 203375                    |
| Off-Highway Trucks                             | 400                       | 12                     | 0<br>7          | 88                   | 0<br>84 | 7392                             | 2956800                   |
| Other Diesel Construction Eq.                  | 400<br>172                | 0                      | 0               | 0<br>0               | 0<br>0  | 0                                |                           |
| Other General Industrial Eq.                   | 88                        | 0                      | 0               | 0                    | 0       | 0                                | 0<br>0                    |
| Other Material Handling Eq.                    | 88<br>167                 |                        | 0               | 0                    |         | 0                                | -                         |
| Pavers                                         | 107                       | 0<br>1                 | 4               | 0<br>11              | 0<br>4  | 0<br>44                          | 0<br>5544                 |
|                                                | 120                       |                        |                 |                      |         |                                  |                           |
| Paving Eq. Other                               |                           | 0                      | 0               | 0                    | 0       | 0                                | 0                         |
| Plate Compactors<br>Pressure Washers           | 8                         | 0                      | 0               | 0                    | 0       | 0                                | 0                         |
|                                                | 13<br>84                  | 0                      | 0               | 0                    | 0       | 0                                | 0                         |
| Pumps<br>Dellar Commentant                     |                           | 0                      | 0               | 0                    | 0       | 0                                | 0                         |
| Roller Compactors                              | 81<br>100                 | 1                      | 7<br>0          | 17                   | 7       | 119                              | 9639                      |
| Rough Terrain Forklifts<br>Rubber Tired Dozers | 255                       | 0                      |                 | 0                    | 0       | 0                                | 0                         |
| Rubber Tires Loaders                           | 233<br>200                | 0                      | 0<br>0          | 0                    | 0       | 0                                | 0                         |
|                                                |                           | 0                      |                 | 0                    | 0       | 0                                | 0                         |
| Scrapers<br>Signal Decada                      | 362                       | 0                      | 0               | 0                    | 0       | 0                                | 0                         |
| Signal Boards                                  | 6                         | 0                      | 0               | 0<br>75              | 0       | 0                                | 0<br>34125                |
| Skid Steer Loaders                             | 65<br>254                 | 1<br>0                 | 7               | 75                   | 7       | 525                              |                           |
| Surfacing Eq.                                  |                           | ~                      | 0               | 0                    | 0       | 0                                | 0                         |
| Sweepers/Scrubbers                             | 64                        | 0                      | 0               | 0                    | Ũ       | 0                                | 0                         |
| Tractors (sin                                  | ngle 98<br>98             | 2                      | 7               | 98<br>22             | 14      | 1372                             | 134456                    |
| Front End Loaders cate                         | gory)                     | 1                      | 7               | 33                   | 7       | 231                              | 22638                     |
| Backhoes                                       | 98<br>91                  | 1                      | 4               | 63<br>86             | 4       | 252                              | 24696                     |
| Trenchers                                      | 81                        | 3                      | 4               | 86                   | 12      | 1032                             | 83592                     |
| Welders                                        | 46<br>175                 | 0                      | 0               | 0                    | 0       | 0                                | 0                         |
| Gasoline Const Eq.                             | 175                       | 0                      | 0               | 0                    | 0       | 0                                | 0                         |

\*\* diesel equipment unless otherwise specified.

| Const Period Diesel Hp-Hrs =     | 4340597 |      |
|----------------------------------|---------|------|
| Const Period Gasoline Hp-Hrs =   | 0       |      |
| Const Period Diesel Fuel Use =   | 260436  | gals |
| Const Period Gasoline Fuel Use = | 0       | gals |

gal/hp-hr

gal/hp-hr

0.06

0.11

diesel

gasoline

Offroad equipment emissions factors derived SCAQMD Off Road database for 2025.

The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              |           |        | 2025 Equip | oment Emissi | ons Factors |          |         |
|----------------------------------------------|-----------|--------|------------|--------------|-------------|----------|---------|
| Equip.                                       | lbs/hr    | lbs/hr | lbs/hr     | lbs/hr       | lbs/hr      | lbs/hr   | lbs/hr  |
| Туре                                         | VOC (ROG) | CO     | NOx        | SOx          | PM10        | CO2      | CH4     |
| Aerial Lifts                                 | 0.0184    | 0.1646 | 0.1366     | 0.0004       | 0.0048      | 34.7217  | 0.0017  |
| Air Compressors                              | 0.0349    | 0.3027 | 0.2104     | 0.0007       | 0.0088      | 63.6073  | 0.0031  |
| Bore-Drill Rigs                              | 0.0428    | 0.5007 | 0.2864     | 0.0017       | 0.0042      | 164.8678 | 0.0039  |
| Cement Mixers                                | 0.0085    | 0.0414 | 0.0534     | 0.0001       | 0.0021      | 7.2481   | 0.0008  |
| Concrete/Industrial Saws                     | 0.0337    | 0.3706 | 0.2471     | 0.0007       | 0.0093      | 58.4637  | 0.0030  |
| Cranes                                       | 0.0681    | 0.3738 | 0.4223     | 0.0014       | 0.0143      | 128.6241 | 0.0061  |
| Crawler Tractors/Dozers                      | 0.0789    | 0.5065 | 0.4492     | 0.0013       | 0.0227      | 114.0167 | 0.0071  |
| Crushing/Processing Eq.                      | 0.0693    | 0.6187 | 0.3763     | 0.0015       | 0.0146      | 132.3077 | 0.0062  |
| Dumpers/Tenders                              | 0.0092    | 0.0314 | 0.0581     | 0.0001       | 0.0022      | 7.6244   | 0.0008  |
| Excavators                                   | 0.0559    | 0.5086 | 0.2269     | 0.0013       | 0.0086      | 119.5792 | 0.0050  |
| Forklifts                                    | 0.0236    | 0.2148 | 0.0860     | 0.0006       | 0.0025      | 54.3958  | 0.0021  |
| Generator Sets                               | 0.0288    | 0.2667 | 0.2329     | 0.0007       | 0.0081      | 60.9927  | 0.0026  |
| Graders                                      | 0.0676    | 0.5696 | 0.3314     | 0.0015       | 0.0147      | 132.7431 | 0.0061  |
| Off-Highway Tractors                         | 0.1134    | 0.6101 | 0.7291     | 0.0017       | 0.0331      | 151.3869 | 0.0102  |
| Off-Highway Trucks                           | 0.1140    | 0.5385 | 0.4769     | 0.0027       | 0.0142      | 260.0652 | 0.0103  |
| Other Diesel Construction Eq.                | 0.0442    | 0.3474 | 0.2021     | 0.0013       | 0.0069      | 122.5051 | 0.0040  |
| Other General Industrial Eq.                 | 0.0747    | 0.4438 | 0.3947     | 0.0016       | 0.0130      | 152.2399 | 0.0067  |
| Other Material Handling Eq.                  | 0.0696    | 0.4355 | 0.3844     | 0.0015       | 0.0124      | 141.1941 | 0.0063  |
| Pavers                                       | 0.0717    | 0.4745 | 0.3858     | 0.0009       | 0.0220      | 77.9326  | 0.0065  |
| Paving Eq. Other                             | 0.0548    | 0.3993 | 0.3281     | 0.0008       | 0.0190      | 68.9364  | 0.0049  |
| Plate Compactors                             | 0.0050    | 0.0263 | 0.0314     | 0.0001       | 0.0012      | 4.3138   | 0.0005  |
| Pressure Washers                             | 0.0066    | 0.0531 | 0.0561     | 0.0001       | 0.0019      | 9.4135   | 0.0006  |
| Pumps                                        | 0.0270    | 0.2617 | 0.2079     | 0.0006       | 0.0078      | 49.6066  | 0.0024  |
| Roller Compactors                            | 0.0410    | 0.3763 | 0.2501     | 0.0008       | 0.0122      | 67.0308  | 0.0037  |
| Rough Terrain Forklifts                      | 0.0396    | 0.4430 | 0.2336     | 0.0008       | 0.0090      | 70.2808  | 0.0036  |
| Rubber Tired Dozers                          | 0.1672    | 0.6620 | 1.0824     | 0.0025       | 0.0419      | 239.0780 | 0.0151  |
| Rubber Tires Loaders                         | 0.0559    | 0.4311 | 0.2835     | 0.0012       | 0.0121      | 108.6113 | 0.0050  |
| Scrapers                                     | 0.1495    | 0.7187 | 0.8387     | 0.0027       | 0.0335      | 262.4827 | 0.0135  |
| Signal Boards                                | 0.0111    | 0.0909 | 0.0718     | 0.0002       | 0.0029      | 16.6983  | 0.0010  |
| Skid Steer Loaders                           | 0.0186    | 0.2104 | 0.1354     | 0.0004       | 0.0019      | 30.2740  | 0.0017  |
| Surfacing Eq.                                | 0.0638    | 0.3590 | 0.3924     | 0.0017       | 0.0142      | 165.9715 | 0.0058  |
| Sweepers/Scrubbers                           | 0.0410    | 0.4840 | 0.2255     | 0.0009       | 0.0061      | 78.5433  | 0.0037  |
| Tractors                                     | 0.0336    | 0.3586 | 0.1857     | 0.0008       | 0.0059      | 66.7965  | 0.0030  |
| Front End Loaders                            | 0.0336    | 0.3586 | 0.1857     | 0.0008       | 0.0059      | 66.7965  | 0.0030  |
| Backhoes                                     | 0.0336    | 0.3586 | 0.1857     | 0.0008       | 0.0059      | 66.7965  | 0.0030  |
| Trenchers                                    | 0.0674    | 0.4085 | 0.3481     | 0.0007       | 0.0215      | 58.7116  | 0.0061  |
| Welders                                      | 0.0214    | 0.1745 | 0.1373     | 0.0003       | 0.0052      | 25.6027  | 0.0019  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771    | 0.3855 | 1.08       | 0.00014      | 0.1542      | 14.1565  | 0.00037 |
| (gasoline FFs: FPA OMS-AMD Report NR-009A    |           |        |            |              | 2016)       |          |         |

(gasoline EFs: EPA OMS-AMD Report NR-009A, 2-13-98, and SCAQMD EMFAC 2007 CEQA Tables, 2016.)

### Construction Period Emissions, lbs

|                               | U           | onstruction P | eriod Emissio | ns, ibs |      |         |         |      |
|-------------------------------|-------------|---------------|---------------|---------|------|---------|---------|------|
| Equip.                        |             |               |               |         |      |         |         |      |
| Туре                          |             |               |               |         |      |         |         |      |
|                               | VOC         | CO            | NOx           | SOx     | PM10 | CO2     | CH4     |      |
| Aerial Lifts                  | 4           | 38            | 31            | 0       | 1    | 7917    | 0       |      |
| Air Compressors               | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Bore-Drill Rigs               | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Cement Mixers                 | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Concrete/Industrial Saws      | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Cranes                        | 5           | 28            | 32            | 0       | 1    | 9775    | 0       |      |
| Crawler Tractors/Dozers       | 141         | 904           | 802           | 2       | 41   | 203520  | 13      |      |
| Crushing/Processing Eq.       | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Dumpers/Tenders               | 35          | 120           | 222           | 0       | 8    | 29140   | 3       |      |
| Excavators                    | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Forklifts                     | 91          | 825           | 330           | 2       | 10   | 208880  | 8       |      |
| Generator Sets                | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Graders                       | 102         | 857           | 499           | 2       | 22   | 199778  | 9       |      |
| Off-Highway Tractors          | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Off-Highway Trucks            | 843         | 3981          | 3525          | 20      | 105  | 1922402 | 76      |      |
| Other Diesel Construction Eq. | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Other General Industrial Eq.  | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Other Material Handling Eq.   | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Pavers                        | 3           | 21            | 17            | 0       | 1    | 3429    | 0       |      |
| Paving Eq. Other              | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Plate Compactors              | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Pressure Washers              | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Pumps                         | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Roller Compactors             | 5           | 45            | 30            | 0       | 1    | 7977    | 0       |      |
| Rough Terrain Forklifts       | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Rubber Tired Dozers           | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Rubber Tires Loaders          | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Scrapers                      | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Signal Boards                 | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Skid Steer Loaders            | 10          | 110           | 71            | 0       | 1    | 15894   | 1       |      |
| Surfacing Eq.                 | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Sweepers/Scrubbers            | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Tractors                      | 46          | 492           | 255           | 1       | 8    | 91645   | 4       |      |
| Front End Loaders             | 8           | 83            | 43            | 0       | 1    | 15430   | 1       |      |
| Backhoes                      | 8           | 90            | 47            | 0       | 1    | 16833   | 1       |      |
| Trenchers                     | 70          | 422           | 359           | 1       | 22   | 60590   | 6       |      |
| Welders                       | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Gasoline Const Eq.            | 0           | 0             | 0             | 0       | 0    | 0       | 0       |      |
| Susome Const Ly.              | 0           | 0             | 0             | 0       | U    | 0       | 0       |      |
| Totals                        | VOC         | СО            | NOx           | SOx     | PM10 | PM2.5   | CO2     | CH4  |
| lbs per const. period         | 1370        | 8016          | 6263          | 30      | 224  | 222.33  | 2793210 | 123  |
| tons per const. period        | 0.7         | 4.0           | 3.1           | 0.015   | 0.11 | 0.11    | 1396.60 | 0.06 |
| Average lbs/day =             | 4.3         | 25.4          | 19.9          | 0.015   | 0.71 | 0.71    | 8867.33 | 0.39 |
| Normalized TPY =              | 4.5<br>0.59 | 3.44          | 2.68          | 0.01    | 0.71 | 0.10    | 1197.09 | 0.05 |
|                               | 0.57        | 5.77          | 2.00          | 0.01    | 0.10 | 0.10    | 1177.07 | 0.05 |

CO2e, tons/period CO2e, tons/yr: N2O 48 0.02 0.15 0.020

1405.2 1204.5

CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

Other Assumptions and References:

1. Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08.

Optimum trench construction progress rate is 80m (260ft) per day.

Non-optimum trench construction progress rate is 30m (100 ft) per day.

An average progress of 180 ft/day is used where applicable.

2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness.

A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable.

The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr.

- Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001.
- 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.
- 4. Construction schedule note: applicant data indicates a construction work day period of 8 hours
  - The equipment use rates provided by the applicant are consistent with an 8 hour workday.
- 5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.

| CONSTRUCTIO         | ON PHASE       | - SGF 12             |                    |                 |                    |                  |                 |        |
|---------------------|----------------|----------------------|--------------------|-----------------|--------------------|------------------|-----------------|--------|
| MRILevel 2 Ana      | alysis(Refs    | 1, 3-7)              |                    |                 | Acres              | 1151             |                 |        |
| A cres Subject to ( | Construction   | Disturbance Acti     | vites:             |                 |                    | 115.1            |                 |        |
| Max Acres Subje     | ct to Constru  | uction Disturbance   | e Activites on any | day of this pl  | nase:              | 8.6              | note (10)       |        |
| Emissions Factor    | for PM10 U     | ncontrolled, tons/   | acre/month:        |                 |                    | 0.12             |                 |        |
| PM2.5 fraction of   | PM10 (per      | CARB CEIDARS         | SProfiles):        |                 |                    | 0.21             |                 |        |
| Activity Levels:    |                | Hrs/Day:             |                    |                 |                    | 8                |                 |        |
|                     |                | Days/Wk:             |                    |                 |                    | 5                |                 |        |
|                     |                | Days/Month:          | Applicant Data     |                 |                    | 22               |                 |        |
|                     | Phase Cons     | t Period, Months:    |                    |                 |                    | 13.8             | 1.15            | years  |
|                     | Phase Co       | nst Period, Days:    |                    |                 |                    | 303.6            |                 |        |
| Wet Season Adju     | ustment:       | (Per AP-42, Se       | ction 13.2.2, Figu | ire 13.2.2-1, 1 | 2/03 or CalEEM     | od, Appendix D   | Table 1.1.)     |        |
| Ν                   | 1ean#days/     | yearwithrain>=       | 0.01 inch:         |                 |                    | 40               |                 |        |
| Ν                   | 1ean # montl   | hs/yrwithrain>=      | 0.01 inch:         |                 |                    | 1.33             |                 |        |
| A                   | djusted Con    | st Period, Months    |                    |                 |                    | 12.27            |                 |        |
| A                   | djusted Con    | st Period, Days:     |                    |                 |                    | 258              |                 |        |
|                     |                |                      |                    |                 |                    |                  |                 |        |
| Controlsfor Fug     | jitive Dust:   |                      | Pro                | posed wateri    | ng cycle:          | 3                | times per day   |        |
|                     |                |                      |                    |                 |                    |                  |                 |        |
| 3 watering cycles/  | /8 hour cons   | truction shift yield | ls a 68% reductio  | n, use 68% fo   | r non-desert sites | . (11)(12)       |                 |        |
| Speed control of a  | onsite const t | traffic to <15 mph   | yields a 40-70%    | reduction (us   | e 50% control as   | conservative for | site). (11)(12) |        |
|                     |                | Calculated %         | control based on   | mitigationspr   | oposed:            | 84               | % control       |        |
|                     |                | Conservative co      | ontrol % used for  | emissions esti  | mates:             | 84               | % control       |        |
|                     |                |                      |                    |                 |                    | 0.16             | releasefraction |        |
| Emissions: Cont     | rolled         | PM10                 | PM2.5              |                 |                    |                  |                 |        |
| tc                  | ons/month      | 0.166                | 0.035              |                 |                    |                  |                 |        |
| tc                  | ons/period     | 2.033                | 0.427              |                 |                    |                  |                 |        |
| Max Ib              | os/day         | 15.068               | 3.164              |                 |                    |                  |                 |        |
|                     |                |                      |                    |                 |                    |                  |                 |        |
| Soil Handling Er    | •              | ut and Fill): (2)    |                    |                 |                    |                  |                 |        |
| Total cu.yds of so  |                |                      | 0                  |                 |                    | rind speed, mph  | : (8)           | 8.03   |
| Total tons of soil  |                |                      | 0.0                |                 | Avg. Soil mois     |                  |                 | 5      |
| Total days soil ha  | ndled:         |                      | 258                |                 | Avg. Soil densi    | • •              |                 | 1.3    |
| Tons soil/day:      |                |                      | 0                  |                 | k factor for PM    | -                |                 | 0.35   |
| Control Eff, wate   | -              |                      | 80                 |                 | Number of Dro      |                  |                 | 4      |
|                     | Rele           | ase Fraction:        | 0.2                |                 | Calc 1             | wind             |                 | 1.851  |
|                     |                |                      |                    |                 | Calc 2             | moisture         |                 | 3.607  |
| Emissions:          | PM10           | PM2.5                |                    |                 | Calc 3             | int              |                 | 0.513  |
| tons/period         | 0.000          | 0.000                |                    |                 | Calc 4             | PM10             | lb/ton          | 0.0006 |
| tons/month          | 0.000          | 0.000                |                    |                 | PM2.5 fraction     | of PM10:         |                 | 0.210  |
| max Ibs/day         | 0.000          | 0.000                |                    |                 |                    |                  |                 |        |
|                     |                |                      |                    | <b>B1</b>       | <b>BI</b>          |                  |                 |        |
|                     |                | Emissions Tota       |                    | PM 10           | PM 2.5             |                  |                 |        |
|                     |                |                      | tons/period        | 2.033           | 0.427              |                  |                 |        |
|                     |                |                      |                    |                 |                    |                  |                 |        |

## Methodology References:

(1) MRI Report, South Coast AQMD Project No. 95040, March 1996, Level 2 Analysis Procedure.

MRI Report uncontrolled factor of 0.11 tons/acre/month is based on 168 hours per month of const activity.

For an activity rate of ~180 hrs/month, the adjusted EF would be 0.12 tons/acre/month (uncontrolled).

(2) Soil Handling (Cut and Fill), EPA, AP-42, Section 13.2.4., 11/06.

(3) URBEMIS, Version 9.2.4, User's Manual Appendix A, page A-6.

(4) CARB Area Source Methodology, Section 7.7, 9/02.

(5) WRAP Fugitive Dust Handbook, 9/06.

(6) USEPA, AP-42, Section 13.2.3, 2/10.

(7) Estimating PM Emissions from Construction Operations, USEPA, MRI, 9/99.

(8) Wind speed data for Lemoore met station. Annual avg wind speed = 8.03 mph, % calms = 3.44%.

(9) Soil Moisture; 5% assumed avg value

(10) adjusted applicant value based on 7.5% of total acreage disturbed on any given day

(11) SCAQMD CEQA Handbook 1993.

(12) SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres, Fugitive Dust Mitigations, February 2005.

## OFFSITE PAVED ROAD FUGITIVE DUST EMISSIONS

(associated with delivery truck and worker vehicle traffic on I-5 and plant access road)

| Average mi   | leage for const                        | ruction relat                    | ted vehicles:             | NA      | miles, roundtrip distance***                                                    |
|--------------|----------------------------------------|----------------------------------|---------------------------|---------|---------------------------------------------------------------------------------|
| Avg weight   | t of vehicular eo                      | quipment or                      | n road:                   | 4.1     | tons (range 2 - 42 tons)                                                        |
| Road surfa   | cesiltloadingfa                        | actor:                           |                           | 0.015   | g/m2 (range 0.03 - 400 g/m2)<br>Limited Access Freeway >10,000 ADT <b>(I-5)</b> |
| Particlesiz  | e multiplier fac                       | tors:                            | PM10                      | 0.0022  | Ib/VMT                                                                          |
|              | •                                      |                                  | PM2.5                     | 0.00054 | Ib/VMT                                                                          |
|              |                                        |                                  |                           |         |                                                                                 |
| C factors (b | orake and tire w                       | ear):                            | PM10                      | 0.00047 | Ib/VMT                                                                          |
|              |                                        |                                  | PM2.5                     | 0.00036 | Ib/VMT                                                                          |
|              |                                        |                                  |                           |         |                                                                                 |
| Avg vehicle  | e speed on road                        |                                  |                           | 65      | mph                                                                             |
|              |                                        |                                  |                           |         |                                                                                 |
| Avg. Numb    | per of vehicles p                      | er day:                          |                           | 195     |                                                                                 |
|              |                                        |                                  |                           |         | calculated per Applicant da                                                     |
| Avg. Numb    | per of work days                       | •                                |                           | 22      | VMT/period: 6517302                                                             |
|              |                                        | T                                | otal vehicles per month   |         |                                                                                 |
| Number of    | work months:                           |                                  |                           | 12.44   | adjusted for precip events                                                      |
|              |                                        | Total veh                        | nicles per const period:  | 53367.6 |                                                                                 |
|              | Calc 1<br>Calc 2<br>Calc 3             | PM10<br>0.022<br>4.217<br>0.0007 | lb/VMT                    |         |                                                                                 |
|              | Emissions<br>Ibs/period<br>tons/period | PM 10<br>4386.78<br>2.193        | PM 2.5<br>741.37<br>0.371 |         |                                                                                 |

EPA, AP-42, Section 13.2.1, March 2006, updated 9/2008.

PM2.5 fraction of PM10 per CARB CEIDARs is 0.169

\*\*\* Note: avg roundtrip distance traveled by delivery or worker vehicles on freeways (I-5) and other State Routes in the project area.

Vehicles per day: worker + deliveries+staff support vehicles (averages)

## ONSITE UNPAVED ROAD FUGITIVE DUST

| Length of Unpaved Roads                                   | on Construct                                      | ion site:                                                | 0.1                | miles*                                 |                           |                           |  |
|-----------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|--------------------|----------------------------------------|---------------------------|---------------------------|--|
| Avg weight of construction                                | vehiculare                                        | quipment on road:                                        | 24                 | tons (range 2 - 42 tons)               |                           |                           |  |
| Road surface silt content:<br>Road surface material mois  | 4.1<br>5                                          | % (range 1.8<br>% (range 0.03                            | ,                  |                                        |                           |                           |  |
| Particle size multiplier fact                             | ors:                                              | PM10<br>PM2.5                                            | k<br>1.5<br>0.15   | a<br>0.9<br>0.9                        | b<br>0.45<br>0.45         |                           |  |
| C factors (brake and tire we                              | ear):                                             | PM10<br>PM2.5                                            | 0.00047<br>0.00036 | Ib/VMT<br>Ib/VMT                       |                           |                           |  |
| Avg construction vehicle sp                               | 5                                                 | mph (range 5                                             | -55 mph)           |                                        |                           |                           |  |
| Avg number of construction                                | n vehicles pe                                     | er day:                                                  | 74                 | * *                                    |                           |                           |  |
| Number of construction wo<br>Number of construction wo    | 22<br>1628<br>12.44<br>64753.2                    | VMT/period: 6475.32<br>adjusted for precipitation events |                    |                                        |                           |                           |  |
| Control reduction due to wa                               |                                                   | cles per const period:<br>cd control, etc. =             | 80                 |                                        |                           |                           |  |
|                                                           |                                                   | Release Fraction =                                       | 0.8<br>0.2         |                                        |                           |                           |  |
| Calc 1<br>Calc 2<br>Calc 3<br>Calc 4<br>Controlled lb/VMT | PM10<br>0.380<br>2.549<br>1.455<br>1.455<br>0.291 | PM2.5<br>0.380<br>2.549<br>0.145<br>0.146<br>0.029       |                    | Emissions<br>Ibs/period<br>tons/period | PM 10<br>1884.32<br>0.942 | PM 2.5<br>188.84<br>0.094 |  |

EPA, AP-42, Section 13.2.2, March 2006

Soil Moisture; 5% avg

Soil silt content: 8.5% per AP-42 for construction site scraper routes

\*\* const equipment plus site support pickups plus

## CONSTRUCTION PHASE - Truck Hauling/Delivery and Site Support Vehicle Emissions

| All Phases                     |                 |               |            |            |                 |            |            |            |             |              |        |
|--------------------------------|-----------------|---------------|------------|------------|-----------------|------------|------------|------------|-------------|--------------|--------|
| Delivery/Hauling Vehicle Use   | Rates           |               |            | Emissi     | ons Factors (Ib | os/vmt)    |            |            |             |              |        |
| Delivery Roundtrip Distance:   | 0               | miles         | NOx        | CO         | VOC             | SOx        | PM10       | CO2        |             |              |        |
| Const Days per Period:         | 0               |               | 0.00133459 | 0.00037027 | 6.2834E-05      | 0.000025   | 1.0747E-05 | 2.91617689 | HDDT        |              |        |
| Avg Deliveries per Day:        | 0               |               | 0.00026191 | 0.00201574 | 3.9247E-05      | 0.000011   | 2.7302E-06 | 0.8745735  | MDGT        |              |        |
| Fraction of Deliveries-Diesel: | 0.95            | HDDT          |            |            | Daily Emise     | ions (lbs) |            |            |             |              |        |
| Fraction of Deliveries-Gas:    | 0.05            | MDGT          | NOx        | СО         | VOC             | SOx        | PM 10      | CO2        | PM 2.5      |              |        |
| Total Delivery VMT:            | 987625          | per Applicant | 0.000      | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | HDDT         |        |
| Total Daily VMT-Diesel         | 0               |               | 0.000      | 0.000      | 0.000           | 0.000      | 0.000      | 0.000      | 0.000       | MDGT         |        |
| Total Daily VMT-Gasoline       | 0               |               |            | -          | Tonsper Con     | st Period  |            |            |             |              |        |
| Total Period VMT-Diesel        | 938243.75       | ;             | 0.626      | 0.174      | 0.029           | 0.012      | 0.005      | 1368.0     | 0.004       | HDDT         |        |
| Total Period VMT-Gasoline      | 49381.25        |               | 0.006      | 0.050      | 0.001           | 0.000      | 0.000      | 21.6       | 0.000       | MDGT         |        |
| Construction Site Support Ve   | ehide Use Rates | (LDTs)        |            |            | Daily Emissi    | ons. Ibs   |            |            |             |              |        |
| Gasoline Vehicle VMT Period:   |                 | (             | NOx        | СО         | VOC             | SOx        | PM 10      | CO2        |             |              | PM 2.5 |
| Avg Daily Gasoline VMT:        | 300             |               | 0.0002232  | 0.00204313 |                 | 0.000007   | 3.782E-06  | 0.55087942 | lbs/vmt*    | LDT gasoline |        |
| Avg Daily Diesel VMT:          | 0               |               | 0.0670     | 0.6129     | 0.0109          | 0.0021     | 0.0011     | 165.2638   |             | gasoline     | 0.0007 |
| Total Phase Const Days:        | 240             |               |            |            |                 |            |            |            |             | 9            |        |
|                                | -               |               |            |            | Tonsper Co      | nst Period |            |            |             |              |        |
| Ref: EMFAC 2014, SJV APCD      | Year 2023       |               | 0.0085     | 0.0775     | 0.0014          | 0.0003     | 0.0001     | 20.9       | tons/period | gasoline     | 0.0001 |
| LDT1-gas, MDV-gas, HDDT-o      | dsl             |               |            |            |                 |            |            |            |             |              |        |
| See EF data in WSP Support A   | ppendix         |               |            |            |                 |            |            |            |             |              |        |
|                                |                 |               |            |            |                 |            |            |            |             |              |        |

#### Notes \*\*\*

VMT for delivery/hauling for all vehicles includes: (1) materials deliveries to site, (2) materials removal from site, other VMT as specified below.

Support Vehicle VMT: best estimate at time of filing, 10 LDT (gasoline) at 30 VMT/day

CARB-CEIDARS, Updated Fractions for PM Profiles: PM2.5 = 0.991 of PM10 for Diesel Exhaust, and 0.998 for Gasoline Vehicles.

## CONSTRUCTION PHASE - Worker Travel - Emissions

|                                      |               | <b>N15</b> | LDA-gas    |             |                  |                  |               |             |        |  |
|--------------------------------------|---------------|------------|------------|-------------|------------------|------------------|---------------|-------------|--------|--|
| Worker Travel to Site                |               |            |            |             | •                | NWSP Support A   | Appendix      |             |        |  |
| Avg Occupancy/Vehicle:               | 0             |            |            |             |                  |                  |               |             |        |  |
| Avg Roundtrip Distance, miles:       | 0.0           |            |            | Emissio     | ns Factors (Ibs/ | ∕VMT)            |               |             |        |  |
| Avg # of Worker Vehicles, per day:   | 0             |            | NOx        | CO          | voc`             | SOx              | PM10          | CO2         |        |  |
| Avg Daily Worker VMT:                | 0             |            | 8.5075E-05 | 0.000810295 | 1.5737E-05       | 0.00006          | 0.000004      | 0.56063169  |        |  |
| Max # of Worker Vehicles, per day:   | 0             |            |            |             |                  |                  |               |             |        |  |
| Max Daily Worker VMT:                | 0             |            |            | Da          | aily Emissions   | s (Ibs)          |               |             |        |  |
| Total Const Days:                    | 240           |            | NOx        | CO          | VOC              | SOx              | PM10          | CO2         | PM2.5  |  |
| Total Const Period Worker VMT:       | 4437000       | Avg        | 0.00       | 0.00        | 0.00             | 0.00             | 0.00          | 0.00        | 0.00   |  |
| VMT data supplie                     | d by Applicar | nt.        |            |             |                  |                  |               |             |        |  |
|                                      |               |            |            |             | nsperConstl      |                  |               |             |        |  |
|                                      |               | Avg        | 0.189      | 1.798       | 0.035            | 0.013            | 0.009         | 1243.8      | 0.000  |  |
|                                      |               |            |            |             |                  |                  |               |             |        |  |
| Worker Travel by Busing from Staging |               | D D D      |            | 0           |                  |                  |               | V           |        |  |
| Total Bus VMT/Const Period:          | 0             |            | Trips/Day: | 0           | max              | Ref: SJVAPCD     |               | , Year 2025 |        |  |
| Avg Bus VMT/Const Day:               | 0<br>0        | Bus Occup  | ancy/irip: | 0           |                  | All other buses- |               | nnondiv     |        |  |
| Max Bus VMT/Const Day:               | 0             |            |            |             |                  | See EF data in \ | WSP Support A | ppendix     |        |  |
|                                      |               |            |            | Emissio     | ns Factors (Ibs/ | (VMT)            |               |             |        |  |
| # buses supplied by Applicant.       |               |            | NOx        | CO          | VOC              | SOx              | PM10          | CO2         |        |  |
|                                      |               |            | 0.002933   | 0.00055     | 0.000105         | 0.000025         | 0.00007       | 2.661084    |        |  |
|                                      |               |            |            |             |                  |                  |               |             |        |  |
|                                      |               |            |            | Da          | aily Emissions   | (lbs)            |               |             |        |  |
|                                      |               |            | NOx        | СО          | VOC              | SOx              | PM 10         | CO2         | PM 2.5 |  |
|                                      |               | Avg        | 0.00       | 0.00        | 0.00             | 0.00             | 0.00          | 0.00        | 0.00   |  |
|                                      |               | Max        | 0.00       | 0.00        | 0.00             | 0.00             | 0.00          | 0.00        | 0.00   |  |
|                                      |               |            |            |             |                  |                  |               |             |        |  |
|                                      |               |            |            |             | Tonsper Cor      |                  |               |             |        |  |
|                                      |               | Avg        | 0.000      | 0.000       | 0.000            | 0.000            | 0.000         | 0.000       | 0.000  |  |
|                                      |               |            |            |             |                  |                  |               |             |        |  |

Ref: SJVAPCD EMFAC 2014, Year 2025

#### **CONSTRUCTION PHASE - Trackout Emissions**

| Paved Road Length (miles):       | 0.1          | estimated rou   | undtrip trackout distance |                 |             |
|----------------------------------|--------------|-----------------|---------------------------|-----------------|-------------|
| Daily # of Vehicles:             | 74           |                 |                           |                 |             |
| Avg Vehicle Weight (tons):       | 6.8          |                 | PM 10                     | PM 2.5*         |             |
| Total Unadjusted VMT/day         | 7.4          |                 | 0.361                     |                 |             |
| Particle Size Multipliers        | PM10         |                 | 1.924                     |                 |             |
| Ib/VMT                           | 0.023        |                 | 0.002                     | 0.0004          | Ib/VMT      |
| C factor, Ib/VMT                 | 0.00047      |                 | 0.129                     | 0.0217          | lbs/day     |
| Road Sfc Silt Loading (g/m^2):   | 0.56         | local X 2       | 0.001                     | 0.0002          | tons/month  |
| # of Active Trackout Points:     | 1            | * *             | 0.02                      | 0.0030          | tons/period |
| Added Trackout Miles:            | PM10         |                 |                           |                 | -           |
| Trackout VMT/day:                | 44           |                 | Default Silt Load Val     | ues for Paved I | Road Types  |
| Final Adjusted VMT/day           | 52           |                 | Freeway                   | 0.02 g/m2       |             |
| Final Adjusted VMT/month         | 1140         |                 | Arterial                  | 0.036 g/m2      |             |
| Final Adjusted VMT/period        | 14177        |                 | Collector                 | 0.036 g/m2      |             |
| Construction days/month:         | 22           |                 | Local                     | 0.28 g/m2       |             |
| Adj. Construction months/period: | 12.44        |                 | Rural                     | 1.6 g/m2        |             |
| Control Applied to Trackout:     | Gravel entra | nce, metal clea | aning grates, water washi | ng, sweeping    |             |
| Control Efficiency, %            | 84           | 0.84            | Release Factor =          | 0.16            |             |

\* PM2.5 fraction of PM10 assumed to be 0.169 (CARB CEIDARS updated fraction values) for paved roads.

\*\* 1 controlled ingress/egress point is planned for site construction

EPA, AP-42, Section 13.2.1, Proposed revisions dated 9/2008.

Use silt loading factor from default values for road type if no site specific data is available.

Trackout effects approximately 0.05 mi. of roadway arriving and departing from the site access point.

Plant access road is already paved. Entrance will be gravelled with metal grates for take out control.

Vehicle count = delivery trucks plus site support trucks (see Unpaved Onsite tab)

Worker vehicles not counted for trackout, they will park on the site perimeter.

#### CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

| Project:    | WSP                          | Main Site Construction-230 kV Switchyard (2 iden             | ntical switchyards, emissio | ons are the | same for each) |
|-------------|------------------------------|--------------------------------------------------------------|-----------------------------|-------------|----------------|
| Assumptio   | ons:                         | North Site                                                   |                             |             |                |
| 1. The aver | age engines employed in cor  | astruction equipment use consumes fuel at a rate of:         | diesel                      | 0.06        | gal/hp-hr      |
| Ref: EPA,   | NR-009b Publication, Nover   | nber 2002.                                                   | gasoline                    | 0.11        | gal/hp-hr      |
| Ref: Sacrai | nento County APCD Const.     | Program Data, V. 6.0.3, 3/2007.                              |                             |             |                |
| Ref: EPA,   | NR-009c Publication, EPA 4   | 20-P-04-009, April 2004.                                     |                             |             |                |
| Ref: Niland | Energy Project, IID, AFC V   | /ol 2, App A.                                                |                             |             |                |
| Ref: South  | Coast AQMD PR XXI, Dra       | ft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03.     |                             |             |                |
| The above   | noted references present fue | consumption values which range from 0.050 to 0.064 gal/hp-hr |                             |             |                |

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

for diesel engines used in construction related equipment. The value of 0.060 gal/hp-hr was chosen as

a reasonable upper mid-range value for construction diesel emissions calculations. For gasoline the mid-range value from SCAQMD of 0.11 gal/hp-hr was used.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:               | 8<br>8<br>0.67 | months<br>hrs/day<br>years | Construction Totals: | 170<br>1360<br>170 | hrs/month<br>hrs/const peri<br>days/const pe |          |
|-----------------------------------------|----------------|----------------------------|----------------------|--------------------|----------------------------------------------|----------|
| 5. Anticipated Construction Start Year: |                | 2017/2021                  | 7.                   | N2O EF die         | sel, lb/gal:                                 | 0.000183 |

6. Maximum anticipated equipment use month is: n/a

ıe. lb∕ 0.000164 CARB, Mandatory GHG Reporting Regulation Table 4, Appendix A, 2007.

Equipment types and use rates supplied by the Applicant.

|                                     | Weighted<br>Average | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site | Total   | Total Hrs<br>per Const | Total<br>HP-Hrs |
|-------------------------------------|---------------------|------------------------|-----------------|----------------------|---------|------------------------|-----------------|
| Equipment Category**                | HP                  | Project                | Hrs/day         | (each)               | Hrs/Day | Period                 | Period          |
| Aerial Lifts                        | 63                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Air Compressors                     | 78                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Bore-Drill Rigs                     | 206                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cement Mixers                       | 9                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Concrete/Industrial Saws            | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cranes                              | 226                 | 1                      | 8               | 4                    | 8       | 32                     | 7232            |
| Crawler Tractors/Dozers             | 208                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Crushing/Processing Eq.             | 85                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Dumpers/Tenders/Water Trucks        | 16                  | 1                      | 6               | 170                  | 6       | 1020                   | 16320           |
| Excavators                          | 163                 | 1                      | 8               | 25                   | 8       | 200                    | 32600           |
| Forklifts                           | 89                  | 1                      | 8               | 60                   | 8       | 480                    | 42720           |
| Generator Sets                      | 84                  | 1                      | 8               | 40                   | 8       | 320                    | 26880           |
| Graders                             | 175                 | 1                      | 8               | 40                   | 8       | 320                    | 56000           |
| Off-Highway Tractors                | 123                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Off-Highway Trucks                  | 400                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other Diesel Construction Eq.       | 172                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other General Industrial Eq.        | 88                  | 0                      | 0               | õ                    | õ       | õ                      | 0               |
| Other Material Handling Eq.         | 167                 | 0                      | 0               | õ                    | õ       | õ                      | 0               |
| Pavers                              | 126                 | 1                      | 8               | 25                   | 8       | 200                    | 25200           |
| Paving Eq. Other                    | 131                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Plate Compactors                    | 8                   | õ                      | Ő               | Ő                    | 0       | Ő                      | 0               |
| Pressure Washers                    | 13                  | Ő                      | Ő               | 0                    | 0       | 0                      | õ               |
| Pumps                               | 84                  | 0                      | 0               | 0                    | 0       | 0                      | õ               |
| Roller Compactors                   | 81                  | 1                      | 8               | 2                    | 8       | 16                     | 1296            |
| Rough Terrain Forklifts             | 100                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tired Dozers                 | 255                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tires Loaders                | 200                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Scrapers                            | 362                 | 1                      | 8               | 14                   | 8       | 112                    | 40544           |
| Signal Boards                       | 6                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Skid Steer Loaders                  | 65                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Skid Steer Loaders<br>Surfacing Eq. | 254                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
|                                     | 234<br>64           | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Sweepers/Scrubbers<br>Tractors      | 64<br>98            | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| (single                             |                     |                        |                 |                      |         | -                      |                 |
| Front End Loaders category)         | 98                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Backhoes                            | 98                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Trenchers                           | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Welders                             | 46                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Gasoline Const Eq.                  | 175                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
|                                     |                     |                        |                 |                      | Const P | ariod Diecel H         | n Hrs - 2/      |

\*\* diesel equipment unless otherwise specified.

| Const Period Diesel Hp-Hrs =     | 248792 |      |
|----------------------------------|--------|------|
| Const Period Gasoline Hp-Hrs =   | 0      |      |
| Const Period Diesel Fuel Use =   | 14928  | gals |
| Const Period Gasoline Fuel Use = | 0      | gals |

Offroad equipment emissions factors derived SCAQMD Off Road database for 2016. The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              | 2016 Equipment Emissions Factors |           |              |         |        |          |         |  |  |  |  |
|----------------------------------------------|----------------------------------|-----------|--------------|---------|--------|----------|---------|--|--|--|--|
| Equip.                                       | lbs/hr                           | lbs/hr    | lbs/hr       | lbs/hr  | lbs/hr | lbs/hr   | lbs/hr  |  |  |  |  |
| Туре                                         | VOC (ROG)                        | со        | NOx          | SOx     | PM10   | CO2      | CH4     |  |  |  |  |
| Aerial Lifts                                 | 0.0397                           | 0.1800    | 0.2482       | 0.0004  | 0.0150 | 34.7217  | 0.0036  |  |  |  |  |
| Air Compressors                              | 0.0704                           | 0.3207    | 0.4729       | 0.0007  | 0.0318 | 63.6073  | 0.0064  |  |  |  |  |
| Bore-Drill Rigs                              | 0.0623                           | 0.5016    | 0.5340       | 0.0017  | 0.0160 | 164.9093 | 0.0056  |  |  |  |  |
| Cement Mixers                                | 0.0088                           | 0.0418    | 0.0542       | 0.0001  | 0.0023 | 7.2481   | 0.0008  |  |  |  |  |
| Concrete/Industrial Saws                     | 0.0756                           | 0.3936    | 0.4589       | 0.0007  | 0.0336 | 58.4637  | 0.0068  |  |  |  |  |
| Cranes                                       | 0.1137                           | 0.4263    | 0.9387       | 0.0014  | 0.0388 | 128.6292 | 0.0103  |  |  |  |  |
| Crawler Tractors/Dozers                      | 0.1335                           | 0.5549    | 0.9315       | 0.0013  | 0.0546 | 114.0188 | 0.0120  |  |  |  |  |
| Crushing/Processing Eq.                      | 0.1337                           | 0.6461    | 0.8965       | 0.0015  | 0.0538 | 132.3090 | 0.0121  |  |  |  |  |
| Dumpers/Tenders                              | 0.0093                           | 0.0314    | 0.0587       | 0.0001  | 0.0024 | 7.6244   | 0.0008  |  |  |  |  |
| Excavators                                   | 0.0988                           | 0.5213    | 0.6603       | 0.0013  | 0.0332 | 119.5800 | 0.0089  |  |  |  |  |
| Forklifts                                    | 0.0427                           | 0.2190    | 0.2816       | 0.0006  | 0.0137 | 54.3958  | 0.0039  |  |  |  |  |
| Generator Sets                               | 0.0581                           | 0.2862    | 0.4370       | 0.0007  | 0.0241 | 60.9927  | 0.0052  |  |  |  |  |
| Graders                                      | 0.1197                           | 0.5883    | 0.8866       | 0.0015  | 0.0441 | 132.7430 | 0.0108  |  |  |  |  |
| Off-Highway Tractors                         | 0.1803                           | 0.7067    | 1.4108       | 0.0017  | 0.0670 | 151.4197 | 0.0163  |  |  |  |  |
| Off-Highway Trucks                           | 0.1816                           | 0.5831    | 1.3322       | 0.0027  | 0.0459 | 260.0516 | 0.0164  |  |  |  |  |
| Other Diesel Construction Eq.                | 0.0720                           | 0.3602    | 0.5680       | 0.0013  | 0.0234 | 122.5629 | 0.0065  |  |  |  |  |
| Other General Industrial Eq.                 | 0.1267                           | 0.4731    | 1.0122       | 0.0016  | 0.0425 | 152.2399 | 0.0114  |  |  |  |  |
| Other Material Handling Eq.                  | 0.1202                           | 0.4608    | 0.9913       | 0.0015  | 0.0411 | 141.1941 | 0.0108  |  |  |  |  |
| Pavers                                       | 0.1269                           | 0.5135    | 0.7128       | 0.0009  | 0.0489 | 77.9335  | 0.0114  |  |  |  |  |
| Paving Eq. Other                             | 0.0965                           | 0.4198    | 0.6393       | 0.0008  | 0.0436 | 68.9412  | 0.0087  |  |  |  |  |
| Plate Compactors                             | 0.0050                           | 0.0263    | 0.0314       | 0.0001  | 0.0012 | 4.3138   | 0.0005  |  |  |  |  |
| Pressure Washers                             | 0.0121                           | 0.0579    | 0.0764       | 0.0001  | 0.0044 | 9.4135   | 0.0011  |  |  |  |  |
| Pumps                                        | 0.0562                           | 0.2785    | 0.3830       | 0.0006  | 0.0239 | 49,6067  | 0.0051  |  |  |  |  |
| Roller Compactors                            | 0.0792                           | 0.3944    | 0.5273       | 0.0008  | 0.0353 | 67.0483  | 0.0071  |  |  |  |  |
| Rough Terrain Forklifts                      | 0.0775                           | 0.4549    | 0.5104       | 0.0008  | 0.0372 | 70.2808  | 0.0070  |  |  |  |  |
| Rubber Tired Dozers                          | 0.2591                           | 0.9834    | 2.0891       | 0.0025  | 0.0858 | 239.0905 | 0.0234  |  |  |  |  |
| Rubber Tires Loaders                         | 0.0983                           | 0.4557    | 0.7114       | 0.0012  | 0.0375 | 108.6114 | 0.0089  |  |  |  |  |
| Scrapers                                     | 0.2383                           | 0.9053    | 1.9017       | 0.0027  | 0.0783 | 262,4900 | 0.0215  |  |  |  |  |
| Signal Boards                                | 0.0161                           | 0.0921    | 0.1172       | 0.0002  | 0.0060 | 16.6983  | 0.0014  |  |  |  |  |
| Skid Steer Loaders                           | 0.0305                           | 0.2184    | 0.2044       | 0.0004  | 0.0106 | 30,2770  | 0.0028  |  |  |  |  |
| Surfacing Eq.                                | 0.1045                           | 0.4506    | 0.9731       | 0.0017  | 0.0353 | 165.9721 | 0.0094  |  |  |  |  |
| Sweepers/Scrubbers                           | 0.0810                           | 0.4988    | 0.5192       | 0.0009  | 0.0332 | 78,5433  | 0.0073  |  |  |  |  |
| Tractors                                     | 0.0610                           | 0.3689    | 0.4070       | 0.0008  | 0.0258 | 66.7979  | 0.0055  |  |  |  |  |
| Front End Loaders                            | 0.0610                           | 0.3689    | 0.4070       | 0.0008  | 0.0258 | 66,7979  | 0.0055  |  |  |  |  |
| Backhoes                                     | 0.0610                           | 0.3689    | 0.4070       | 0.0008  | 0.0258 | 66.7979  | 0.0055  |  |  |  |  |
| Trenchers                                    | 0.1200                           | 0.4479    | 0.5719       | 0.0007  | 0.0453 | 58.7146  | 0.0108  |  |  |  |  |
| Welders                                      | 0.0482                           | 0.1951    | 0.2173       | 0.0003  | 0.0168 | 25.6027  | 0.0044  |  |  |  |  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771                           | 0.3855    | 1.08         | 0.00014 | 0.1542 | 14.1565  | 0.00037 |  |  |  |  |
| (gasoline EFs: EPA OMS-AMD Report NR-009A    |                                  |           |              |         |        | 14.1505  | 5.00057 |  |  |  |  |
| (gasonic El S. El A ONIS-AMD Report NR-00)A  | 2 15 70, and 5C                  | LINE LINE | 171C 2007 CI |         | .010.) |          |         |  |  |  |  |

Construction Period Emissions, lbs

| Туре                          |      |             |      |       |      |       |        |      |      |
|-------------------------------|------|-------------|------|-------|------|-------|--------|------|------|
|                               | VOC  | со          | NOx  | SOx   | PM10 | CO2   | CH4    |      |      |
| Aerial Lifts                  | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Air Compressors               | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Bore-Drill Rigs               | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Cement Mixers                 | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Concrete/Industrial Saws      | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Cranes                        | 4    | 14          | 30   | 0     | 1    | 4116  | 0      |      |      |
| Crawler Tractors/Dozers       | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Crushing/Processing Eq.       | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Dumpers/Tenders               | 9    | 32          | 60   | 0     | 2    | 7777  | 1      |      |      |
| Excavators                    | 20   | 104         | 132  | 0     | 7    | 23916 | 2      |      |      |
| Forklifts                     | 21   | 105         | 135  | 0     | 7    | 26110 | 2      |      |      |
| Generator Sets                | 19   | 92          | 140  | 0     | 8    | 19518 | 2      |      |      |
| Graders                       | 38   | 188         | 284  | 0     | 14   | 42478 | 3      |      |      |
| Off-Highway Tractors          | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Off-Highway Trucks            | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Other Diesel Construction Eq. | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Other General Industrial Eq.  | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Other Material Handling Eq.   | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Pavers                        | 25   | 103         | 143  | 0     | 10   | 15587 | 2      |      |      |
| Paving Eq. Other              | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Plate Compactors              | 0    | 0           | 0    | 0     | 0    | 0     | õ      |      |      |
| Pressure Washers              | 0    | 0           | 0    | 0     | 0    | 0     | õ      |      |      |
| Pumps                         | 0    | 0           | 0    | Õ     | 0    | 0     | õ      |      |      |
| Roller Compactors             | 1    | 6           | 8    | 0     | 1    | 1073  | 0      |      |      |
| Rough Terrain Forklifts       | 0    | 0           | 0    | Ő     | 0    | 0     | ő      |      |      |
| Rubber Tired Dozers           | 0    | 0           | 0    | Ő     | Ő    | Ő     | Ő      |      |      |
| Rubber Tires Loaders          | Ő    | 0           | 0    | Ő     | Ő    | Ő     | Ő      |      |      |
| Scrapers                      | 27   | 101         | 213  | Ő     | 9    | 29399 | 2      |      |      |
| Signal Boards                 | 0    | 0           | 0    | Ő     | 0    | 0     | 0      |      |      |
| Skid Steer Loaders            | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Surfacing Eq.                 | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Sweepers/Scrubbers            | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Tractors                      | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Front End Loaders             | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Backhoes                      | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Trenchers                     | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Welders                       | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Gasoline Const Eq.            | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Gasonne Const Eq.             | 0    | 0           | 0    | 0     | 0    | 0     | 0      |      |      |
| Totals                        | VOC  | со          | NOx  | SOx   | PM10 | PM2.5 | CO2    | CH4  | N2   |
| lbs per const. period         | 164  | 745         | 1145 | 2     | 58   | 57.26 | 169973 | 15   | 3    |
| tons per const. period        | 0.1  | 0.4         | 0.6  | 0.001 | 0.03 | 0.03  | 84.99  | 0.01 | 0.0  |
| Average lbs/day =             | 1.0  | 4.4         | 6.7  | 0.001 | 0.03 | 0.03  | 999.84 | 0.01 | 0.0  |
| Normalized TPY =              | 0.12 | 4.4<br>0.56 | 0.86 | 0.001 | 0.34 | 0.34  | 127.48 | 0.09 | 0.00 |
|                               | 0.12 | 0.20        | 0.00 | 0.00  | 0.07 | 0.07  | 12/110 | 0.01 | 5.0  |

CO2e, tons/period 85.6 CO2e, tons/yr: 128.4

CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

Other Assumptions and References:

Equip. т,

1. Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08. Optimum trench construction progress rate is 80m (260ft) per day.

Non-optimum trench construction progress rate is 30m (100 ft) per day. An average progress of 180 ft/day is used where applicable.

2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness. A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable.

The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr. Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001. 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.

Construction schedule note: application a catched y number and uncer rates are only of 8 hours The equipment use rates provided by the applicant are consistent with an 8 hour workday.

5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.

#### CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

| Project:    | WSP                          | Main Site Construction-230 kV Switchyard (2 id                 | entical switchyards, emissio | ns are the | same for each) |
|-------------|------------------------------|----------------------------------------------------------------|------------------------------|------------|----------------|
| Assumptio   | ons:                         | South Site                                                     |                              |            |                |
| 1. The aver | age engines employed in cor  | astruction equipment use consumes fuel at a rate of:           | diesel                       | 0.06       | gal/hp-hr      |
| Ref: EPA,   | NR-009b Publication, Nover   | nber 2002.                                                     | gasoline                     | 0.11       | gal/hp-hr      |
| Ref: Sacrai | nento County APCD Const.     | Program Data, V. 6.0.3, 3/2007.                                |                              |            |                |
| Ref: EPA,   | NR-009c Publication, EPA 4   | 20-P-04-009, April 2004.                                       |                              |            |                |
| Ref: Niland | Energy Project, IID, AFC V   | /ol 2, App A.                                                  |                              |            |                |
| Ref: South  | Coast AQMD PR XXI, Dra       | ft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03.       |                              |            |                |
| The above   | noted references present fue | l consumption values which range from 0.050 to 0.064 gal/hp-hr |                              |            |                |
| The above   | noted references present fue | consumption values which range from 0.050 to 0.064 gal/hp-hr   |                              |            |                |

a reasonable upper mid-range value for construction diesel emissions calculations. For gasoline the mid-range value from SCAQMD of 0.11 gal/hp-hr was used.

for diesel engines used in construction related equipment. The value of 0.060 gal/hp-hr was chosen as

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:               | 8<br>8 | months<br>hrs/day | Construction Totals: | 170<br>1360 | hrs/month<br>hrs/const peri | od       |
|-----------------------------------------|--------|-------------------|----------------------|-------------|-----------------------------|----------|
|                                         | 0.67   | years             |                      | 170         | days/const pe               | riod     |
| 5. Anticipated Construction Start Year: |        | 2017/2021         | 7.                   | N2O EF die  |                             | 0.000183 |

6. Maximum anticipated equipment use month is: n/a

N2O EF gasoline, lb/gal: 0.000164 CARB, Mandatory GHG Reporting Regulation Table 4, Appendix A, 2007.

Equipment types and use rates supplied by the Applicant.

|                               | Weighted<br>Average | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site | Total   | Total Hrs<br>per Const | Total<br>HP-Hrs |
|-------------------------------|---------------------|------------------------|-----------------|----------------------|---------|------------------------|-----------------|
| Equipment Category**          | HP                  | Project                | Hrs/day         | (each)               | Hrs/Day | Period                 | Period          |
| Aerial Lifts                  | 63                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Air Compressors               | 78                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Bore-Drill Rigs               | 206                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cement Mixers                 | 9                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Concrete/Industrial Saws      | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cranes                        | 226                 | 1                      | 8               | 4                    | 8       | 32                     | 7232            |
| Crawler Tractors/Dozers       | 208                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Crushing/Processing Eq.       | 85                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Dumpers/Tenders/Water Trucks  | 16                  | 1                      | 6               | 170                  | 6       | 1020                   | 16320           |
| Excavators                    | 163                 | 1                      | 8               | 25                   | 8       | 200                    | 32600           |
| Forklifts                     | 89                  | 1                      | 8               | 60                   | 8       | 480                    | 42720           |
| Generator Sets                | 84                  | 1                      | 8               | 40                   | 8       | 320                    | 26880           |
| Graders                       | 175                 | 1                      | 8               | 40                   | 8       | 320                    | 56000           |
| Off-Highway Tractors          | 123                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Off-Highway Trucks            | 400                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other Diesel Construction Eq. | 172                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other General Industrial Eq.  | 88                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other Material Handling Eq.   | 167                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pavers                        | 126                 | 1                      | 8               | 25                   | 8       | 200                    | 25200           |
| Paving Eq. Other              | 131                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Plate Compactors              | 8                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pressure Washers              | 13                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pumps                         | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Roller Compactors             | 81                  | 1                      | 8               | 2                    | 8       | 16                     | 1296            |
| Rough Terrain Forklifts       | 100                 | 0                      | õ               | 0                    | 0       | 0                      | 0               |
| Rubber Tired Dozers           | 255                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tires Loaders          | 200                 | 0                      | 0               | õ                    | 0       | õ                      | 0               |
| Scrapers                      | 362                 | 1                      | 8               | 14                   | 8       | 112                    | 40544           |
| Signal Boards                 | 6                   | 0                      | õ               | 0                    | 0       | 0                      | 0               |
| Skid Steer Loaders            | 65                  | 0                      | õ               | Ő                    | 0       | õ                      | 0               |
| Surfacing Eq.                 | 254                 | ő                      | Ő               | Ő                    | 0       | Ő                      | 0               |
| Sweepers/Scrubbers            | 64                  | Ő                      | Ő               | Ő                    | 0       | Ő                      | 0               |
| Tractors                      | 98                  | ő                      | Ő               | Ő                    | 0       | ő                      | 0               |
| Front End Loaders (single     | 99                  | Ő                      | Ő               | 0                    | 0       | 0                      | 0               |
| Backhoes category)            | 98                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Trenchers                     | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Welders                       | 46                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Gasoline Const Eq.            | 175                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Gasomic Const Eq.             | 175                 | 0                      | 0               | 0                    | U       | 0                      | U               |
|                               |                     |                        |                 |                      | Const P | ariod Diesel H         | n-Hrs - 2       |

\*\* diesel equipment unless otherwise specified.

Const Period Diesel Hp-Hrs = 248792 Const Period Gasoline Hp-Hrs = 0 14928 Const Period Diesel Fuel Use = gals Const Period Gasoline Fuel Use = 0 gals

Offroad equipment emissions factors derived SCAQMD Off Road database for 2020. The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2020 Equipment Emissions Factors |        |        |         |        |          |         |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|--------|---------|--------|----------|---------|--|--|--|--|
| Equip.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lbs/hr                           | lbs/hr | lbs/hr | lbs/hr  | lbs/hr | lbs/hr   | lbs/hr  |  |  |  |  |
| Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VOC (ROG)                        | со     | NOx    | SOx     | PM10   | CO2      | CH4     |  |  |  |  |
| Aerial Lifts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0261                           | 0.1696 | 0.1866 | 0.0004  | 0.0092 | 34.7217  | 0.0024  |  |  |  |  |
| Air Compressors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0483                           | 0.3077 | 0.3255 | 0.0007  | 0.0185 | 63.6073  | 0.0044  |  |  |  |  |
| Bore-Drill Rigs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0480                           | 0.5008 | 0.3439 | 0.0017  | 0.0062 | 164.8622 | 0.0043  |  |  |  |  |
| Cement Mixers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0086                           | 0.0415 | 0.0536 | 0.0001  | 0.0021 | 7.2481   | 0.0008  |  |  |  |  |
| Concrete/Industrial Saws                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0484                           | 0.3783 | 0.3410 | 0.0007  | 0.0196 | 58.4636  | 0.0044  |  |  |  |  |
| Cranes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0898                           | 0.3917 | 0.6610 | 0.0014  | 0.0256 | 128.6305 | 0.0081  |  |  |  |  |
| Crawler Tractors/Dozers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1049                           | 0.5260 | 0.6772 | 0.0013  | 0.0378 | 114.0177 | 0.0095  |  |  |  |  |
| Crushing/Processing Eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0934                           | 0.6247 | 0.5983 | 0.0015  | 0.0310 | 132.3083 | 0.0084  |  |  |  |  |
| Dumpers/Tenders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0092                           | 0.0314 | 0.0582 | 0.0001  | 0.0022 | 7.6244   | 0.0008  |  |  |  |  |
| Excavators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0733                           | 0.5124 | 0.4042 | 0.0013  | 0.0184 | 119.5795 | 0.0066  |  |  |  |  |
| Forklifts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0320                           | 0.2160 | 0.1691 | 0.0006  | 0.0070 | 54.3958  | 0.0029  |  |  |  |  |
| Generator Sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0395                           | 0.2732 | 0.3232 | 0.0007  | 0.0150 | 60.9927  | 0.0036  |  |  |  |  |
| Graders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0919                           | 0.5765 | 0.5823 | 0.0015  | 0.0280 | 132,7430 | 0.0083  |  |  |  |  |
| Off-Highway Tractors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1470                           | 0.6517 | 1.0657 | 0.0017  | 0.0497 | 151.4031 | 0.0133  |  |  |  |  |
| Off-Highway Trucks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1443                           | 0.5514 | 0.8306 | 0.0027  | 0.0280 | 260.0871 | 0.0130  |  |  |  |  |
| Other Diesel Construction Eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0563                           | 0.3508 | 0.3519 | 0.0013  | 0.0139 | 122.4967 | 0.0051  |  |  |  |  |
| Other General Industrial Eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0983                           | 0.4517 | 0.6661 | 0.0016  | 0.0262 | 152.2399 | 0.0089  |  |  |  |  |
| Other Material Handling Eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0924                           | 0.4429 | 0.6500 | 0.0015  | 0.0252 | 141.1941 | 0.0083  |  |  |  |  |
| Pavers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0989                           | 0.4920 | 0.5450 | 0.0009  | 0.0355 | 77.9332  | 0.0089  |  |  |  |  |
| Paving Eq. Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0757                           | 0.4084 | 0.4807 | 0.0008  | 0.0315 | 68.9391  | 0.0068  |  |  |  |  |
| Plate Compactors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0050                           | 0.0263 | 0.0314 | 0.0001  | 0.0012 | 4.3138   | 0.0005  |  |  |  |  |
| Pressure Washers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0085                           | 0.0549 | 0.0650 | 0.0001  | 0.0030 | 9.4135   | 0.0008  |  |  |  |  |
| Pumps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0376                           | 0.2674 | 0.2854 | 0.0006  | 0.0147 | 49,6067  | 0.0034  |  |  |  |  |
| Roller Compactors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0584                           | 0.3837 | 0.3793 | 0.0008  | 0.0232 | 67.0402  | 0.0053  |  |  |  |  |
| Rough Terrain Forklifts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0533                           | 0.4464 | 0.3494 | 0.0008  | 0.0201 | 70.2808  | 0.0048  |  |  |  |  |
| Rubber Tired Dozers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2118                           | 0.8006 | 1.5773 | 0.0025  | 0.0630 | 239.0842 | 0.0191  |  |  |  |  |
| Rubber Tires Loaders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0753                           | 0.4406 | 0.4747 | 0.0012  | 0.0235 | 108.6109 | 0.0068  |  |  |  |  |
| Scrapers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1914                           | 0.7938 | 1.3434 | 0.0027  | 0.0541 | 262.4852 | 0.0173  |  |  |  |  |
| Signal Boards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0129                           | 0.0912 | 0.0912 | 0.0002  | 0.0042 | 16.6983  | 0.0012  |  |  |  |  |
| Skid Steer Loaders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0222                           | 0.2125 | 0.1614 | 0.0004  | 0.0050 | 30,2770  | 0.0020  |  |  |  |  |
| Surfacing Eq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0823                           | 0.3953 | 0.6593 | 0.0017  | 0.0239 | 165.9635 | 0.0074  |  |  |  |  |
| Sweepers/Scrubbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0584                           | 0.4916 | 0.3563 | 0.0009  | 0.0183 | 78,5433  | 0.0053  |  |  |  |  |
| Tractors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0436                           | 0.3616 | 0.2744 | 0.0008  | 0.0134 | 66.7988  | 0.0039  |  |  |  |  |
| Front End Loaders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0436                           | 0.3616 | 0.2744 | 0.0008  | 0.0134 | 66.7988  | 0.0039  |  |  |  |  |
| Backhoes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0436                           | 0.3616 | 0.2744 | 0.0008  | 0.0134 | 66,7988  | 0.0039  |  |  |  |  |
| Trenchers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0933                           | 0.4270 | 0.4575 | 0.0007  | 0.0336 | 58.7130  | 0.0084  |  |  |  |  |
| Welders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0310                           | 0.1816 | 0.1735 | 0.0003  | 0.0102 | 25.6027  | 0.0028  |  |  |  |  |
| Gasoline Const Eq. (assumed 175 hp category)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0771                           | 0.3855 | 1.08   | 0.00014 | 0.1542 | 14.1565  | 0.00037 |  |  |  |  |
| (gasoline EFs: EPA OMS-AMD Report NR-009A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |        |        |         |        | 1.110.00 | 5.00057 |  |  |  |  |
| Comment of the second s | , = 10 90, and be                |        |        |         |        |          |         |  |  |  |  |

Construction Period Emissions, lbs

| Туре                          |      |      |             |       |      |       |                    |      |      |
|-------------------------------|------|------|-------------|-------|------|-------|--------------------|------|------|
|                               | VOC  | со   | NOx         | SOx   | PM10 | CO2   | CH4                |      |      |
| Aerial Lifts                  | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Air Compressors               | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Bore-Drill Rigs               | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Cement Mixers                 | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Concrete/Industrial Saws      | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Cranes                        | 3    | 13   | 21          | 0     | 1    | 4116  | 0                  |      |      |
| Crawler Tractors/Dozers       | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Crushing/Processing Eq.       | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Dumpers/Tenders               | 9    | 32   | 59          | 0     | 2    | 7777  | 1                  |      |      |
| Excavators                    | 15   | 102  | 81          | 0     | 4    | 23916 | 1                  |      |      |
| Forklifts                     | 15   | 104  | 81          | 0     | 3    | 26110 | 1                  |      |      |
| Generator Sets                | 13   | 87   | 103         | 0     | 5    | 19518 | 1                  |      |      |
| Graders                       | 29   | 184  | 186         | 0     | 9    | 42478 | 3                  |      |      |
| Off-Highway Tractors          | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Off-Highway Trucks            | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Other Diesel Construction Eq. | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Other General Industrial Eq.  | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Other Material Handling Eq.   | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Pavers                        | 20   | 98   | 109         | 0     | 7    | 15587 | 2                  |      |      |
| Paving Eq. Other              | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Plate Compactors              | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Pressure Washers              | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Pumps                         | 0    | 0    | 0           | 0     | 0    | 0     | Õ                  |      |      |
| Roller Compactors             | 1    | 6    | 6           | 0     | 0    | 1073  | 0                  |      |      |
| Rough Terrain Forklifts       | 0    | 0    | 0           | 0     | 0    | 0     | õ                  |      |      |
| Rubber Tired Dozers           | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Rubber Tires Loaders          | 0    | 0    | 0           | 0     | 0    | Ő     | ő                  |      |      |
| Scrapers                      | 21   | 89   | 150         | 0     | 6    | 29398 | 2                  |      |      |
| Signal Boards                 | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Skid Steer Loaders            | 0    | 0    | 0           | 0     | 0    | Ő     | ő                  |      |      |
| Surfacing Eq.                 | 0    | 0    | 0           | 0     | 0    | Ő     | Ő                  |      |      |
| Sweepers/Scrubbers            | 0    | 0    | 0           | 0     | 0    | Ő     | ő                  |      |      |
| Tractors                      | 0    | 0    | 0           | 0     | 0    | Ő     | Ő                  |      |      |
| Front End Loaders             | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Backhoes                      | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Trenchers                     | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Welders                       | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Gasoline Const Eq.            | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Gasonice Const Eq.            | 0    | 0    | 0           | 0     | 0    | 0     | 0                  |      |      |
| Totals                        | VOC  | со   | NOx         | SOx   | PM10 | PM2.5 | CO2                | CH4  | N2   |
| lbs per const. period         | 126  | 716  | 798         | 2     | 37   | 37.06 | 169972             | 11   | 3    |
| tons per const. period        | 0.1  | 0.4  | 0.4         | 0.001 | 0.02 | 0.02  | 84.99              | 0.01 | 0.0  |
| Average lbs/day =             | 0.1  | 4.2  | 4.7         | 0.001 | 0.02 | 0.02  | 999.84             | 0.01 | 0.0  |
|                               | 0.7  |      | <b>-</b> ./ | 0.011 | 0.22 |       | JJJ.0 <del>4</del> |      |      |
| Normalized TPY =              | 0.09 | 0.54 | 0.60        | 0.00  | 0.03 | 0.03  | 127.48             | 0.01 | 0.00 |

CO2e, tons/yr: CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

CO2e, tons/period

85.5

128.3

Other Assumptions and References:

Equip. т,

1. Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08.

Optimum trench construction progress rate is 80m (260ft) per day. Non-optimum trench construction progress rate is 30m (100 ft) per day.

An average progress of 180 ft/day is used where applicable.

2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness. A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable. The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr. Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001. 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.

Construction schedule note: application a catched y number and uncer rates are only of 8 hours The equipment use rates provided by the applicant are consistent with an 8 hour workday.

5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.

#### CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

a reasonable upper mid-range value for construction diesel emissions calculations. For gasoline the mid-range value from SCAQMD of 0.11 gal/hp-hr was used.

| Project:                                                              | WSP                           | Off Site Construction-Substation Upgrades (2 iden            | ntical substation upgrades | , emissions | are the same for |  |  |
|-----------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------|----------------------------|-------------|------------------|--|--|
| Assumptio                                                             | ons:                          | Gates Site                                                   |                            |             |                  |  |  |
| 1. The aver                                                           | age engines employed in con   | struction equipment use consumes fuel at a rate of:          | diesel                     | 0.06        | gal/hp-hr        |  |  |
| Ref: EPA, NR-009b Publication, November 2002. gasoline 0.11 gal/hp-hr |                               |                                                              |                            |             |                  |  |  |
| Ref: Sacrar                                                           | nento County APCD Const.      | Program Data, V. 6.0.3, 3/2007.                              |                            |             |                  |  |  |
| Ref: EPA,                                                             | NR-009c Publication, EPA 4    | 20-P-04-009, April 2004.                                     |                            |             |                  |  |  |
| Ref: Niland                                                           | Energy Project, IID, AFC V    | ol 2, App A.                                                 |                            |             |                  |  |  |
| Ref: South                                                            | Coast AQMD PR XXI, Drat       | t Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03.      |                            |             |                  |  |  |
| The above                                                             | noted references present fuel | consumption values which range from 0.050 to 0.064 gal/hp-hr |                            |             |                  |  |  |
| for diesel e                                                          | ngines used in construction r | elated equipment. The value of 0.060 gal/hp-hr was chosen as |                            |             |                  |  |  |
|                                                                       |                               |                                                              |                            |             |                  |  |  |

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:               | 3<br>8<br>0.25 | months<br>hrs/day<br>years | Construction Totals: | 240hrs/month720hrs/const period90days/const period |   |          |
|-----------------------------------------|----------------|----------------------------|----------------------|----------------------------------------------------|---|----------|
| 5. Anticipated Construction Start Year: |                | 2018                       | 7.                   | N2O EF die                                         | , | 0.000183 |

6. Maximum anticipated equipment use month is: n/a

N2O EF diesel, lb/gal: 0.000183 N2O EF gasoline, lb/gal: 0.000164 CARB, Mandatory GHG Reporting Regulation Table 4, Appendix A, 2007.

Equipment types and use rates supplied by the Applicant.

|                               | Weighted<br>Average | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site | Total   | Total Hrs<br>per Const | Total<br>HP-Hrs |
|-------------------------------|---------------------|------------------------|-----------------|----------------------|---------|------------------------|-----------------|
| Equipment Category**          | HP                  | Project                | Hrs/day         | (each)               | Hrs/Day | Period                 | Period          |
| Aerial Lifts                  | 63                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Air Compressors               | 78                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Bore-Drill Rigs               | 206                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cement Mixers                 | 9                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Concrete/Industrial Saws      | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Cranes                        | 226                 | 2                      | 2               | 4                    | 4       | 16                     | 3616            |
| Crawler Tractors/Dozers       | 208                 | 2                      | 7               | 20                   | 14      | 280                    | 58240           |
| Crushing/Processing Eq.       | 85                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Dumpers/Tenders/Water Trucks  | 16                  | 1                      | 7               | 90                   | 7       | 630                    | 10080           |
| Excavators                    | 163                 | 2                      | 7               | 20                   | 14      | 280                    | 45640           |
| Forklifts                     | 89                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Generator Sets                | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Graders                       | 175                 | 1                      | 7               | 15                   | 7       | 105                    | 18375           |
| Off-Highway Tractors          | 123                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Off-Highway Trucks            | 400                 | 4                      | 6               | 50                   | 24      | 1200                   | 480000          |
| Other Diesel Construction Eq. | 172                 | 4                      | 6               | 50                   | 24      | 1200                   | 206400          |
| Other General Industrial Eq.  | 88                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Other Material Handling Eq.   | 167                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pavers                        | 126                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Paving Eq. Other              | 131                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Plate Compactors              | 8                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pressure Washers              | 13                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Pumps                         | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Roller Compactors             | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rough Terrain Forklifts       | 100                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tired Dozers           | 255                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Rubber Tires Loaders          | 200                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Scrapers                      | 362                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Signal Boards                 | 6                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Skid Steer Loaders            | 65                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Surfacing Eq.                 | 254                 | 0                      | 0               | õ                    | õ       | 0                      | 0               |
| Sweepers/Scrubbers            | 64                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Tractors                      | 98                  | 1                      | 7               | 30                   | 7       | 210                    | 20580           |
| Front End Londore (single     | 98                  | 1                      | 7               | 30                   | 7       | 210                    | 20580           |
| Backhoes category)            | 98                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Trenchers                     | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Welders                       | 46                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| Gasoline Const Eq.            | 175                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |
| cimento construição           | 1.0                 | Ū                      |                 |                      | -       | . 10. 10               | -               |

\*\* diesel equipment unless otherwise specified.

| Const Period Diesel Hp-Hrs =     | 863511 |      |
|----------------------------------|--------|------|
| Const Period Gasoline Hp-Hrs =   | 0      |      |
| Const Period Diesel Fuel Use =   | 51811  | gals |
| Const Period Gasoline Fuel Use = | 0      | gals |

Offroad equipment emissions factors derived SCAQMD Off Road database for 2016. The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              | 2016 Equipment Emissions Factors |           |              |         |        |          |         |  |  |
|----------------------------------------------|----------------------------------|-----------|--------------|---------|--------|----------|---------|--|--|
| Equip.                                       | lbs/hr                           | lbs/hr    | lbs/hr       | lbs/hr  | lbs/hr | lbs/hr   | lbs/hr  |  |  |
| Туре                                         | VOC (ROG)                        | со        | NOx          | SOx     | PM10   | CO2      | CH4     |  |  |
| Aerial Lifts                                 | 0.0397                           | 0.1800    | 0.2482       | 0.0004  | 0.0150 | 34.7217  | 0.0036  |  |  |
| Air Compressors                              | 0.0704                           | 0.3207    | 0.4729       | 0.0007  | 0.0318 | 63.6073  | 0.0064  |  |  |
| Bore-Drill Rigs                              | 0.0623                           | 0.5016    | 0.5340       | 0.0017  | 0.0160 | 164.9093 | 0.0056  |  |  |
| Cement Mixers                                | 0.0088                           | 0.0418    | 0.0542       | 0.0001  | 0.0023 | 7.2481   | 0.0008  |  |  |
| Concrete/Industrial Saws                     | 0.0756                           | 0.3936    | 0.4589       | 0.0007  | 0.0336 | 58.4637  | 0.0068  |  |  |
| Cranes                                       | 0.1137                           | 0.4263    | 0.9387       | 0.0014  | 0.0388 | 128.6292 | 0.0103  |  |  |
| Crawler Tractors/Dozers                      | 0.1335                           | 0.5549    | 0.9315       | 0.0013  | 0.0546 | 114.0188 | 0.0120  |  |  |
| Crushing/Processing Eq.                      | 0.1337                           | 0.6461    | 0.8965       | 0.0015  | 0.0538 | 132.3090 | 0.0121  |  |  |
| Dumpers/Tenders                              | 0.0093                           | 0.0314    | 0.0587       | 0.0001  | 0.0024 | 7.6244   | 0.0008  |  |  |
| Excavators                                   | 0.0988                           | 0.5213    | 0.6603       | 0.0013  | 0.0332 | 119.5800 | 0.0089  |  |  |
| Forklifts                                    | 0.0427                           | 0.2190    | 0.2816       | 0.0006  | 0.0137 | 54.3958  | 0.0039  |  |  |
| Generator Sets                               | 0.0581                           | 0.2862    | 0.4370       | 0.0007  | 0.0241 | 60.9927  | 0.0052  |  |  |
| Graders                                      | 0.1197                           | 0.5883    | 0.8866       | 0.0015  | 0.0441 | 132.7430 | 0.0108  |  |  |
| Off-Highway Tractors                         | 0.1803                           | 0.7067    | 1.4108       | 0.0017  | 0.0670 | 151.4197 | 0.0163  |  |  |
| Off-Highway Trucks                           | 0.1816                           | 0.5831    | 1.3322       | 0.0027  | 0.0459 | 260.0516 | 0.0164  |  |  |
| Other Diesel Construction Eq.                | 0.0720                           | 0.3602    | 0.5680       | 0.0013  | 0.0234 | 122.5629 | 0.0065  |  |  |
| Other General Industrial Eq.                 | 0.1267                           | 0.4731    | 1.0122       | 0.0016  | 0.0425 | 152.2399 | 0.0114  |  |  |
| Other Material Handling Eq.                  | 0.1202                           | 0.4608    | 0.9913       | 0.0015  | 0.0411 | 141.1941 | 0.0108  |  |  |
| Pavers                                       | 0.1269                           | 0.5135    | 0.7128       | 0.0009  | 0.0489 | 77.9335  | 0.0114  |  |  |
| Paving Eq. Other                             | 0.0965                           | 0.4198    | 0.6393       | 0.0008  | 0.0436 | 68.9412  | 0.0087  |  |  |
| Plate Compactors                             | 0.0050                           | 0.0263    | 0.0314       | 0.0001  | 0.0012 | 4.3138   | 0.0005  |  |  |
| Pressure Washers                             | 0.0121                           | 0.0579    | 0.0764       | 0.0001  | 0.0044 | 9.4135   | 0.0011  |  |  |
| Pumps                                        | 0.0562                           | 0.2785    | 0.3830       | 0.0006  | 0.0239 | 49,6067  | 0.0051  |  |  |
| Roller Compactors                            | 0.0792                           | 0.3944    | 0.5273       | 0.0008  | 0.0353 | 67.0483  | 0.0071  |  |  |
| Rough Terrain Forklifts                      | 0.0775                           | 0.4549    | 0.5104       | 0.0008  | 0.0372 | 70.2808  | 0.0070  |  |  |
| Rubber Tired Dozers                          | 0.2591                           | 0.9834    | 2.0891       | 0.0025  | 0.0858 | 239.0905 | 0.0234  |  |  |
| Rubber Tires Loaders                         | 0.0983                           | 0.4557    | 0.7114       | 0.0012  | 0.0375 | 108.6114 | 0.0089  |  |  |
| Scrapers                                     | 0.2383                           | 0.9053    | 1.9017       | 0.0027  | 0.0783 | 262,4900 | 0.0215  |  |  |
| Signal Boards                                | 0.0161                           | 0.0921    | 0.1172       | 0.0002  | 0.0060 | 16.6983  | 0.0014  |  |  |
| Skid Steer Loaders                           | 0.0305                           | 0.2184    | 0.2044       | 0.0004  | 0.0106 | 30,2770  | 0.0028  |  |  |
| Surfacing Eq.                                | 0.1045                           | 0.4506    | 0.9731       | 0.0017  | 0.0353 | 165.9721 | 0.0094  |  |  |
| Sweepers/Scrubbers                           | 0.0810                           | 0.4988    | 0.5192       | 0.0009  | 0.0332 | 78,5433  | 0.0073  |  |  |
| Tractors                                     | 0.0610                           | 0.3689    | 0.4070       | 0.0008  | 0.0258 | 66.7979  | 0.0055  |  |  |
| Front End Loaders                            | 0.0610                           | 0.3689    | 0.4070       | 0.0008  | 0.0258 | 66,7979  | 0.0055  |  |  |
| Backhoes                                     | 0.0610                           | 0.3689    | 0.4070       | 0.0008  | 0.0258 | 66.7979  | 0.0055  |  |  |
| Trenchers                                    | 0.1200                           | 0.4479    | 0.5719       | 0.0007  | 0.0453 | 58.7146  | 0.0108  |  |  |
| Welders                                      | 0.0482                           | 0.1951    | 0.2173       | 0.0003  | 0.0168 | 25.6027  | 0.0044  |  |  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771                           | 0.3855    | 1.08         | 0.00014 | 0.1542 | 14.1565  | 0.00037 |  |  |
| (gasoline EFs: EPA OMS-AMD Report NR-009A    |                                  |           |              |         |        | 14.1505  | 5.00057 |  |  |
| (gasonic El S. El A ONIS-AMD Report NR-00)A  | 2 15 70, and 5C                  | LINE LINE | 171C 2007 CI |         | .010.) |          |         |  |  |

Construction Period Emissions, lbs

| Туре                          |      |      |      |       |      |        |              |       |      |
|-------------------------------|------|------|------|-------|------|--------|--------------|-------|------|
|                               | VOC  | CO   | NOx  | SOx   | PM10 | CO2    | CH4          |       |      |
| Aerial Lifts                  | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Air Compressors               | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Bore-Drill Rigs               | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Cement Mixers                 | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Concrete/Industrial Saws      | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Cranes                        | 2    | 7    | 15   | 0     | 1    | 2058   | 0            |       |      |
| Crawler Tractors/Dozers       | 37   | 155  | 261  | 0     | 15   | 31925  | 3            |       |      |
| Crushing/Processing Eq.       | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Dumpers/Tenders               | 6    | 20   | 37   | 0     | 1    | 4803   | 1            |       |      |
| Excavators                    | 28   | 146  | 185  | 0     | 9    | 33482  | 2            |       |      |
| Forklifts                     | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Generator Sets                | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Graders                       | 13   | 62   | 93   | 0     | 5    | 13938  | 1            |       |      |
| Off-Highway Tractors          | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Off-Highway Trucks            | 218  | 700  | 1599 | 3     | 55   | 312062 | 20           |       |      |
| Other Diesel Construction Eq. | 86   | 432  | 682  | 2     | 28   | 147075 | 8            |       |      |
| Other General Industrial Eq.  | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Other Material Handling Eq.   | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Pavers                        | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Paving Eq. Other              | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Plate Compactors              | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Pressure Washers              | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Pumps                         | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Roller Compactors             | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Rough Terrain Forklifts       | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Rubber Tired Dozers           | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Rubber Tires Loaders          | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Scrapers                      | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Signal Boards                 | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Skid Steer Loaders            | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Surfacing Eq.                 | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Sweepers/Scrubbers            | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Tractors                      | 13   | 77   | 85   | 0     | 5    | 14028  | 1            |       |      |
| Front End Loaders             | 13   | 77   | 85   | 0     | 5    | 14028  | 1            |       |      |
| Backhoes                      | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Trenchers                     | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Welders                       | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Gasoline Const Eq.            | 0    | 0    | 0    | 0     | 0    | 0      | 0            |       |      |
| Totals                        | voc  | со   | NOx  | SOx   | PM10 | PM2.5  | CO2          | CH4   | N2   |
| lbs per const. period         | 415  | 1677 | 3042 | 6     | 125  | 124.14 | 573400       | 37    | 9    |
| tons per const. period        | 0.2  | 0.8  | 1.5  | 0.003 | 0.06 | 0.06   | 286.70       | 0.02  | 0.0  |
| Average lbs/day =             | 4.6  | 18.6 | 33.8 | 0.067 | 1.39 | 1.38   | 6371.11      | 0.42  | 0.1  |
| Normalized TPY =              | 0.21 | 0.84 | 1.52 | 0.00  | 0.06 | 0.06   | 286.70       | 0.02  | 0.00 |
|                               |      |      |      |       |      |        | CO2e, tons/p | eriod | 288  |
|                               |      |      |      |       |      |        | 000          |       | 200  |

288.6

CO2e, tons/yr:

CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

Other Assumptions and References:

Equip. т,

1. Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08. Optimum trench construction progress rate is 80m (260ft) per day.

Non-optimum trench construction progress rate is 30m (100 ft) per day.

An average progress of 180 ft/day is used where applicable.

2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness. A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable. The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr. Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001. 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.

Construction schedule note: application a catched y number and uncer rates are only of 8 hours The equipment use rates provided by the applicant are consistent with an 8 hour workday.

5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.

### GHG Emissions Associated with Water Pumping/Use

| Project:    | Westlands Solar |           |                     |
|-------------|-----------------|-----------|---------------------|
| Phase:      | Construction    | Operation |                     |
| Acre-feet:* | 4187.6          | 282.7     | pumped and consumed |
|             |                 |           | during each phase   |

Assumptions:

1. electric power required to pump 1 acre-foot of water with minimal treatment is 400 kilowatt-hours, or 0.4 MW-hours (footnote 1)

- 2. electric power is assumed to be generated via combustion of natural gas by the utility servicing the area.
- 3. generation technology is assumed to be a mix of combined-cycle turbines and steam boilers, with avg efficiency of 45%

| mmbtu/Mw-hr:           | 3.41         | std conversion value (footnote 2) |                     |  |  |  |
|------------------------|--------------|-----------------------------------|---------------------|--|--|--|
| Efficiency multiplier: | 1.55         |                                   |                     |  |  |  |
| mmbtu/MW-hr:           | 5.29         | revised for Eff                   | multiplier          |  |  |  |
|                        |              |                                   |                     |  |  |  |
|                        | Construction | Operation                         |                     |  |  |  |
| Total KW-Hrs:          | 1675040      | 113080                            |                     |  |  |  |
| Total MW-Hrs:          | 1675.04      | 113.08                            |                     |  |  |  |
| Total mmbtu:           | 8853.4       | 597.7                             |                     |  |  |  |
|                        |              |                                   |                     |  |  |  |
|                        | CO2          | CH4                               | N2O                 |  |  |  |
| Default EPA NG EF's    | 116.89       | 0.0022046                         | 0.00022046 lb/mmbtu |  |  |  |
| GWP:                   | 1            | 25                                | 298                 |  |  |  |
| Composite CO2e EF:     |              | 117.0108                          | lb/mmbtu            |  |  |  |
| (footnote 3)           |              |                                   |                     |  |  |  |
|                        | Construction | Operation                         |                     |  |  |  |
| Total CO2e:            | 518.0        | 35.0                              | tons                |  |  |  |
|                        | 470.9        | 31.8                              | metric tons         |  |  |  |
|                        | per period   | per year                          |                     |  |  |  |
|                        |              |                                   |                     |  |  |  |

Footnotes:

1. Tranquility SGF, AQ/GHG Technical Report, Feb 2014, Rincon. GEI Consultants/Navigant Consulting Inc., 2010,

2. CRC Handbook of Chemistry and Physics, 72nd Ed., 1992.

3. 40 CFR 98, subpart C, Tables C-1 and C-2, FR 74, No. 209, 10/30/09. 40 CFR 98, Subpart A, Table A-1

\* data supplied by Applicant.

#### Helicopter Emissions Estimates for Transmission Line Projects

Ref: Gateway West Transmission Line DEIS, Tetra Tech EC, Inc., AQ Technical Report, 01/12. Conklin and deDecker Associates, Helicopter CO2 Emissions, Orleans, MA. 02653

| ID/Name                  | Lift Rating | Work days  | Hrs/day | Total Hrs | LTO/hr     | Fuel type   | Engine Type | # of Engines | Engine/HP   |
|--------------------------|-------------|------------|---------|-----------|------------|-------------|-------------|--------------|-------------|
| Hughes 500               | Light       | 85.8       | 8       | 686.4     | 1.5        | AV kerosene | Turbine     | 1            | 420         |
| Sikorsky Skycrane        | Heavy       | 0          | 0       | 0         | 0.5        | AV kerosene | Turbine     | 2            | 4500 (each) |
| <b>Emissions Factors</b> | Light Lift  | Heavy Lift |         | Emissions | Light Lift | Heavy Lift  |             |              |             |
| CO                       | 2.07        | 2.98       | lbs/hr  | CO        | 0.71       | 0.00        | tons/period |              |             |
| NOx                      | 1.75        | 15.5       | lbs/hr  | NOx       | 0.60       | 0.00        | tons/period |              |             |
| PM10                     | 0.096       | 2.09       | lbs/hr  | PM10      | 0.03       | 0.00        | tons/period |              |             |
| SOx                      | 0.14        | 0.96       | lbs/hr  | SOx       | 0.05       | 0.00        | tons/period |              |             |
| VOC                      | 0.08        | 0.2        | lbs/hr  | VOC       | 0.03       | 0.00        | tons/period |              |             |
| CO2                      | 590         | 3600       | lbs/hr  | CO2       | 202.49     | 0.00        | tons/period |              |             |
|                          |             |            |         | CO2e      | 203.20     | 0.00        | tons/period |              |             |

Reference helicopters used on T-Line projects:

#### **Fugitive Dust Emissions from LTO Cycles**

Ref: Huey TPG UH-IH Medium Lift Unit, blade diameter 48 ft., PM fugitive rate at 2 kg/LTO (4.4092 lbs/LTO)

|                   |             |        |                |            |        | Period Emissions |            |             |  |
|-------------------|-------------|--------|----------------|------------|--------|------------------|------------|-------------|--|
| ID/Name           | Lift Rating | LTO/Hr | Blade Diam, ft | lbs PM/LTO | # LTOs | PM, tons         | PM10, tons | PM2.5, tons |  |
| Hughes 500        | Light       | 1.5    | 26.3           | 2.41       | 1030   | 1.24             | 0.74       | 0.12        |  |
| Sikorsky Skycrane | Heavy       | 0.5    | 72             | 6.61       | 0      | 0.00             | 0.00       | 0.00        |  |

\* based on the WSP project data it was assumed the helicopter type would be a heavy lift unit.

North Gen

# Tons/Period

|                    |      |      |      |      |       | F      | −ug   | Fug    |
|--------------------|------|------|------|------|-------|--------|-------|--------|
|                    | NOx  | CO   | VOC  | SOx  | PM 10 | CO2    | PM 10 | PM 2.5 |
| on-off site travel | 0.23 | 0.14 | 0.01 | 0.00 | 0.00  | 530.56 | 2.32  | 0.31   |
| Helicopter         | 0.03 | 0.03 | 0.00 | 0.00 | 0.00  | 9.47   | 0.03  | 0.01   |
| on-site equipment  | 4.16 | 4.35 | 0.69 | 0.01 | 0.15  | 1245   |       |        |
| Total              | 4.42 | 4.52 | 0.70 | 0.02 | 0.15  | 1786   | 2.36  | 0.32   |

## Helicopter Emissions Estimates for Transmission Line Projects

Ref: Gateway West Transmission Line DEIS, Tetra Tech EC, Inc., AQ Technical Report, 01/12. Conklin and deDecker Associates, Helicopter CO2 Emissions, Orleans, MA. 02653

| Reference nel copters u  | sed on I-Line pro | DJECTS:    |         |                  |            |
|--------------------------|-------------------|------------|---------|------------------|------------|
| ID/Name                  | Lift Rating       | Work days  | Hrs/day | <b>Total Hrs</b> | LTO/hr     |
| Hughes 500               | Light             | 4          | 8       | 32               | 1.5        |
| Sikorsky Skycrane        | Heavy             | 0          | 0       | 0                | 0.5        |
| <b>Emissions Factors</b> | Light Lift        | Heavy Lift |         | Emissions        | Light Lift |
| CO                       | 2.07              | 2.98       | lbs/hr  | CO               | 0.03       |
| NOx                      | 1.75              | 15.5       | lbs/hr  | NOx              | 0.03       |
| PM10                     | 0.096             | 2.09       | lbs/hr  | PM10             | 0.00       |
| SOx                      | 0.14              | 0.96       | lbs/hr  | SOx              | 0.00       |
| VOC                      | 0.08              | 0.2        | lbs/hr  | VOC              | 0.00       |
| CO2                      | 590               | 3600       | lbs/hr  | CO2              | 9.44       |
|                          |                   |            |         | CO2e             | 9.47       |
|                          | • • • • • •       |            |         |                  |            |

## Reference helicopters used on T-Line projects:

## **Fugitive Dust Emissions from LTO Cycles**

Ref: Huey TPG UH-IH Medium Lift Unit, blade diameter 48 ft., PM fugitive rate at 2 kg/LTO (4.4092 lbs/LTO)

| ID/Name           | Lift Rating | LTO/Hr | Blade Diam, ft | lbs PM/LTO | # LTOs |
|-------------------|-------------|--------|----------------|------------|--------|
| Hughes 500        | Light       | 1.5    | 26.3           | 2.41       | 48     |
| Sikorsky Skycrane | Heavy       | 0.5    | 72             | 6.61       | 0      |

\* based on the WSP project data it was assumed the helicopter type would be a heavy lift unit.

| Fuel type   | Engine Type | # of Engines | Engine/HP   |
|-------------|-------------|--------------|-------------|
| AV kerosene | Turbine     | 1            | 420         |
| AV kerosene | Turbine     | 2            | 4500 (each) |

## Heavy Lift

| 0.00 | tons/period |
|------|-------------|
| 0.00 | tons/period |

### **Period Emissions**

| PM, tons | PM10, tons | PM2.5, tons |
|----------|------------|-------------|
| 0.06     | 0.03       | 0.01        |
| 0.00     | 0.00       | 0.00        |

## CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

| Project:     | WSP                           | Off Site Construction-Transmission Line Pads and             | l Structures |      |           |
|--------------|-------------------------------|--------------------------------------------------------------|--------------|------|-----------|
| Assumptio    | ons:                          | South Gen Tie                                                |              |      |           |
| 1. The aver  | age engines employed in cor   | struction equipment use consumes fuel at a rate of:          | diesel       | 0.06 | gal/hp-hr |
| Ref: EPA,    | NR-009b Publication, Nover    | nber 2002.                                                   | gasoline     | 0.11 | gal/hp-hr |
| Ref: Sacrar  | mento County APCD Const.      | Program Data, V. 6.0.3, 3/2007.                              |              |      |           |
| Ref: EPA,    | NR-009c Publication, EPA 4    | 20-P-04-009, April 2004.                                     |              |      |           |
| Ref: Niland  | Energy Project, IID, AFC V    | <sup>7</sup> ol 2, App A.                                    |              |      |           |
| Ref: South   | Coast AQMD PR XXI, Dra        | ft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03.     |              |      |           |
| The above    | noted references present fuel | consumption values which range from 0.050 to 0.064 gal/hp-hr |              |      |           |
| for diesel e | ngines used in construction r | elated equipment. The value of 0.060 gal/hp-hr was chosen as |              |      |           |
| a reasonabl  | e upper mid-range value for   | construction diesel emissions calculations.                  |              |      |           |
| For gasolin  | e the mid-range value from S  | SCAQMD of 0.11 gal/hp-hr was used.                           |              |      |           |

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12<br>8<br>1.00 | hrs/day 20  |    | 173.33333<br>2080<br>260 | hrs/month<br>hrs/const period<br>days/const period |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|----|--------------------------|----------------------------------------------------|
| <ul><li>5. Anticipated Construction Start Year:</li><li>6. Maximum anticipated equipment use an anticipated equipment use anticipate</li></ul> |                 | 2019<br>n/a | 7. |                          |                                                    |

Equipment types and use rates supplied by the Applicant.

|                               | Weighted<br>Average | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site | Total   | Total Hrs<br>per Const | Total<br>HP-Hrs |                     |
|-------------------------------|---------------------|------------------------|-----------------|----------------------|---------|------------------------|-----------------|---------------------|
| Equipment Category**          | HP                  | Project                | Hrs/day         | (each)               | Hrs/Day | Period                 | Period          |                     |
| Aerial Lifts                  | 63                  | 1                      | 8               | 320                  | 8       | 2560                   | 161280          |                     |
| Air Compressors               | 78                  | 1                      | 8               | 360                  | 8       | 2880                   | 224640          |                     |
| Bore-Drill Rigs               | 206                 | 1                      | 8               | 180                  | 8       | 1440                   | 296640          |                     |
| Cement Mixers                 | 9                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Concrete/Industrial Saws      | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Cranes                        | 226                 | 1                      | 8               | 230                  | 8       | 1840                   | 415840          |                     |
| Crawler Tractors/Dozers       | 208                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Crushing/Processing Eq.       | 85                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Dumpers/Tenders/Water Trucks  | 16                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Excavators                    | 163                 | 0                      | 0               | 0                    | 0       | 0                      | 0<br>0          |                     |
| Forklifts                     | 89                  | 0                      | 0               | 0                    | 0       | 0                      | 0<br>0          |                     |
| Generator Sets                | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Graders                       | 175                 | 1                      | 8               | 90                   | 8       | 720                    | 126000          |                     |
| Off-Highway Tractors          | 123                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Off-Highway Trucks            | 400                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Other Diesel Construction Eq. | 172                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Other General Industrial Eq.  | 88                  | 1                      | 8               | 280                  | 8       | 2240                   | 197120          | Pullers, tensioners |
| Other Material Handling Eq.   | 167                 | 0                      | 0               | 0                    | 0       | 0                      | 0               | ,                   |
| Pavers                        | 126                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Paving Eq. Other              | 131                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Plate Compactors              | 8                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Pressure Washers              | 13                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Pumps                         | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Roller Compactors             | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Rough Terrain Forklifts       | 100                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Rubber Tired Dozers           | 255                 | 1                      | 8               | 390                  | 8       | 3120                   | 795600          |                     |
| Rubber Tires Loaders          | 200                 | 1                      | 8               | 70                   | 8       | 560                    | 112000          |                     |
| Scrapers                      | 362                 | 1                      | 8               | 70                   | 8       | 560                    | 202720          |                     |
| Signal Boards                 | 6                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Skid Steer Loaders            | 65                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Surfacing Eq.                 | 254                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Sweepers/Scrubbers            | 64                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Tractors (augers)             | 98                  | 1                      | 8               | 300                  | 8       | 2400                   | 235200          |                     |
| Front End Loaders (single     | 98                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Backhoes category)            | 98                  | 1                      | 8               | 270                  | 8       | 2160                   | 211680          |                     |
| Trenchers                     | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Welders                       | 46                  | 1                      | 8               | 180                  | 8       | 1440                   | 66240           |                     |
| Gasoline Const Eq.            | 175                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |

| ** diesel equipment unless otherwise specified. |
|-------------------------------------------------|
|-------------------------------------------------|

| Const Period Diesel Hp-Hrs =     | 3044960 |      |
|----------------------------------|---------|------|
| Const Period Gasoline Hp-Hrs =   | 0       |      |
| Const Period Diesel Fuel Use =   | 182698  | gals |
| Const Period Gasoline Fuel Use = | 0       | gals |

Offroad equipment emissions factors derived SCAQMD Off Road database for 2016.

The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              | 2025 Equipment Emissions Factors |        |        |         |        |          |         |  |
|----------------------------------------------|----------------------------------|--------|--------|---------|--------|----------|---------|--|
| Equip.                                       | lbs/hr                           | lbs/hr | lbs/hr | lbs/hr  | lbs/hr | lbs/hr   | lbs/hr  |  |
| Туре                                         | VOC (ROG)                        | CO     | NOx    | SOx     | PM10   | CO2      | CH4     |  |
| Aerial Lifts                                 | 0.0184                           | 0.1646 | 0.1366 | 0.0004  | 0.0048 | 34.7217  | 0.0017  |  |
| Air Compressors                              | 0.0349                           | 0.3027 | 0.2104 | 0.0007  | 0.0088 | 63.6073  | 0.0031  |  |
| Bore-Drill Rigs                              | 0.0428                           | 0.5007 | 0.2864 | 0.0017  | 0.0042 | 164.8678 | 0.0039  |  |
| Cement Mixers                                | 0.0085                           | 0.0414 | 0.0534 | 0.0001  | 0.0021 | 7.2481   | 0.0008  |  |
| Concrete/Industrial Saws                     | 0.0337                           | 0.3706 | 0.2471 | 0.0007  | 0.0093 | 58.4637  | 0.0030  |  |
| Cranes                                       | 0.0681                           | 0.3738 | 0.4223 | 0.0014  | 0.0143 | 128.6241 | 0.0061  |  |
| Crawler Tractors/Dozers                      | 0.0789                           | 0.5065 | 0.4492 | 0.0013  | 0.0227 | 114.0167 | 0.0071  |  |
| Crushing/Processing Eq.                      | 0.0693                           | 0.6187 | 0.3763 | 0.0015  | 0.0146 | 132.3077 | 0.0062  |  |
| Dumpers/Tenders                              | 0.0092                           | 0.0314 | 0.0581 | 0.0001  | 0.0022 | 7.6244   | 0.0008  |  |
| Excavators                                   | 0.0559                           | 0.5086 | 0.2269 | 0.0013  | 0.0086 | 119.5792 | 0.0050  |  |
| Forklifts                                    | 0.0236                           | 0.2148 | 0.0860 | 0.0006  | 0.0025 | 54.3958  | 0.0021  |  |
| Generator Sets                               | 0.0288                           | 0.2667 | 0.2329 | 0.0007  | 0.0081 | 60.9927  | 0.0026  |  |
| Graders                                      | 0.0676                           | 0.5696 | 0.3314 | 0.0015  | 0.0147 | 132.7431 | 0.0061  |  |
| Off-Highway Tractors                         | 0.1134                           | 0.6101 | 0.7291 | 0.0017  | 0.0331 | 151.3869 | 0.0102  |  |
| Off-Highway Trucks                           | 0.1140                           | 0.5385 | 0.4769 | 0.0027  | 0.0142 | 260.0652 | 0.0103  |  |
| Other Diesel Construction Eq.                | 0.0442                           | 0.3474 | 0.2021 | 0.0013  | 0.0069 | 122.5051 | 0.0040  |  |
| Other General Industrial Eq.                 | 0.0747                           | 0.4438 | 0.3947 | 0.0016  | 0.0130 | 152.2399 | 0.0067  |  |
| Other Material Handling Eq.                  | 0.0696                           | 0.4355 | 0.3844 | 0.0015  | 0.0124 | 141.1941 | 0.0063  |  |
| Pavers                                       | 0.0717                           | 0.4745 | 0.3858 | 0.0009  | 0.0220 | 77.9326  | 0.0065  |  |
| Paving Eq. Other                             | 0.0548                           | 0.3993 | 0.3281 | 0.0008  | 0.0190 | 68.9364  | 0.0049  |  |
| Plate Compactors                             | 0.0050                           | 0.0263 | 0.0314 | 0.0001  | 0.0012 | 4.3138   | 0.0005  |  |
| Pressure Washers                             | 0.0066                           | 0.0531 | 0.0561 | 0.0001  | 0.0019 | 9.4135   | 0.0006  |  |
| Pumps                                        | 0.0270                           | 0.2617 | 0.2079 | 0.0006  | 0.0078 | 49.6066  | 0.0024  |  |
| Roller Compactors                            | 0.0410                           | 0.3763 | 0.2501 | 0.0008  | 0.0122 | 67.0308  | 0.0037  |  |
| Rough Terrain Forklifts                      | 0.0396                           | 0.4430 | 0.2336 | 0.0008  | 0.0090 | 70.2808  | 0.0036  |  |
| Rubber Tired Dozers                          | 0.1672                           | 0.6620 | 1.0824 | 0.0025  | 0.0419 | 239.0780 | 0.0151  |  |
| Rubber Tires Loaders                         | 0.0559                           | 0.4311 | 0.2835 | 0.0012  | 0.0121 | 108.6113 | 0.0050  |  |
| Scrapers                                     | 0.1495                           | 0.7187 | 0.8387 | 0.0027  | 0.0335 | 262.4827 | 0.0135  |  |
| Signal Boards                                | 0.0111                           | 0.0909 | 0.0718 | 0.0002  | 0.0029 | 16.6983  | 0.0010  |  |
| Skid Steer Loaders                           | 0.0186                           | 0.2104 | 0.1354 | 0.0004  | 0.0019 | 30.2740  | 0.0017  |  |
| Surfacing Eq.                                | 0.0638                           | 0.3590 | 0.3924 | 0.0017  | 0.0142 | 165.9715 | 0.0058  |  |
| Sweepers/Scrubbers                           | 0.0410                           | 0.4840 | 0.2255 | 0.0009  | 0.0061 | 78.5433  | 0.0037  |  |
| Tractors                                     | 0.0336                           | 0.3586 | 0.1857 | 0.0008  | 0.0059 | 66.7965  | 0.0030  |  |
| Front End Loaders                            | 0.0336                           | 0.3586 | 0.1857 | 0.0008  | 0.0059 | 66.7965  | 0.0030  |  |
| Backhoes                                     | 0.0336                           | 0.3586 | 0.1857 | 0.0008  | 0.0059 | 66.7965  | 0.0030  |  |
| Trenchers                                    | 0.0674                           | 0.4085 | 0.3481 | 0.0007  | 0.0215 | 58.7116  | 0.0061  |  |
| Welders                                      | 0.0214                           | 0.1745 | 0.1373 | 0.0003  | 0.0052 | 25.6027  | 0.0019  |  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771                           | 0.3855 | 1.08   | 0.00014 | 0.1542 | 14.1565  | 0.00037 |  |
| (gasoline FFs: FPA OMS-AMD Report NR-009A    |                                  |        |        |         | 2016)  |          |         |  |

(gasoline EFs: EPA OMS-AMD Report NR-009A, 2-13-98, and SCAQMD EMFAC 2007 CEQA Tables, 2016.)

### Construction Period Emissions, lbs

| Equip.                        |      |      |      |       |         |        |         |      |
|-------------------------------|------|------|------|-------|---------|--------|---------|------|
| Туре                          |      |      |      |       |         |        |         |      |
|                               | VOC  | CO   | NOx  | SOx   | PM10    | CO2    | CH4     |      |
| Aerial Lifts                  | 47   | 421  | 350  | 1     | 12      | 88888  | 4       |      |
| Air Compressors               | 101  | 872  | 606  | 2     | 25      | 183189 | 9       |      |
| Bore-Drill Rigs               | 62   | 721  | 412  | 2     | 6       | 237410 | 6       |      |
| Cement Mixers                 | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Concrete/Industrial Saws      | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Cranes                        | 125  | 688  | 777  | 3     | 26      | 236668 | 11      |      |
| Crawler Tractors/Dozers       | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Crushing/Processing Eq.       | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Dumpers/Tenders               | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Excavators                    | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Forklifts                     | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Generator Sets                | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Graders                       | 49   | 410  | 239  | 1     | 11      | 95575  | 4       |      |
| Off-Highway Tractors          | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Off-Highway Trucks            | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Other Diesel Construction Eq. | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Other General Industrial Eq.  | 167  | 994  | 884  | 4     | 29      | 341017 | 15      |      |
| Other Material Handling Eq.   | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Pavers                        | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Paving Eq. Other              | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Plate Compactors              | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Pressure Washers              | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Pumps                         | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Roller Compactors             | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Rough Terrain Forklifts       | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Rubber Tired Dozers           | 522  | 2065 | 3377 | 8     | 131     | 745923 | 47      |      |
| Rubber Tires Loaders          | 31   | 241  | 159  | 1     | 7       | 60822  | 3       |      |
| Scrapers                      | 84   | 402  | 470  | 2     | ,<br>19 | 146990 | 8       |      |
| Signal Boards                 | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Skid Steer Loaders            | 0    | 0    | 0    | 0     | 0       | 0      | 0<br>0  |      |
| Surfacing Eq.                 | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Sweepers/Scrubbers            | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Tractors                      | 81   | 861  | 446  | 2     | 14      | 160312 | 7       |      |
| Front End Loaders             | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Backhoes                      | 73   | 775  | 401  | 2     | 13      | 144280 | 6       |      |
| Trenchers                     | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Welders                       | 31   | 251  | 198  | 0     | 7       | 36868  | 3       |      |
| Gasoline Const Eq.            | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Casoline Const Eq.            | 0    | 0    | 0    | 0     | 0       | 0      | 0       |      |
| Totals                        | VOC  | СО   | NOx  | SOx   | PM10    | PM2.5  | CO2     | CH4  |
| lbs per const. period         | 1371 | 8702 | 8318 | 27    | 300     | 297.65 | 2477943 | 123  |
| tons per const. period        | 0.7  | 4.4  | 4.2  | 0.013 | 0.15    | 0.15   | 1238.97 | 0.06 |
| Average lbs/day =             | 5.3  | 33.5 | 32.0 | 0.103 | 1.16    | 1.14   | 9530.55 | 0.47 |
| Normalized TPY =              | 0.7  | 4.4  | 4.2  | 0.0   | 0.2     | 0.1    | 1239.0  | 0.1  |
|                               |      |      |      |       |         |        |         |      |

 CO2e, tons/period
 1245.5

 CO2e, tons/yr:
 1245.5

N2O 33 0.02 0.13 0.017

CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

Other Assumptions and References:

Equip.

1. Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08.

Optimum trench construction progress rate is 80m (260ft) per day.

Non-optimum trench construction progress rate is 30m (100 ft) per day.

An average progress of 180 ft/day is used where applicable.

2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness.

A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable. The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr.

- Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001.
- 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.
- 4. Construction schedule note: applicant data indicates a construction work day period of 8 hours
  - The equipment use rates provided by the applicant are consistent with an 8 hour workday.
- 5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.

| CONSTRUCTION<br>MRILevel 2 An                                                                                                                                                                                                                                                                                     |              |                   | 1 and 2             |                  |                 |                 |                 |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|---------------------|------------------|-----------------|-----------------|-----------------|--------|
| Acres Subject to                                                                                                                                                                                                                                                                                                  |              | -                 | vites:              |                  |                 | 26.4            | Using North Ti  | ie     |
| Max Acres Subje                                                                                                                                                                                                                                                                                                   |              |                   |                     | nv dav of this p | hase:           | 2.6             | note (10)       | -      |
| Emissions Factor                                                                                                                                                                                                                                                                                                  |              |                   |                     | .,,              |                 | 0.12            |                 |        |
| PM2.5 fraction of                                                                                                                                                                                                                                                                                                 |              | ,                 |                     |                  |                 | 0.21            |                 |        |
| Activity Levels                                                                                                                                                                                                                                                                                                   | r i wrio (pa | Hrs/Day:          |                     |                  |                 | 8               |                 |        |
| Addinity Levas                                                                                                                                                                                                                                                                                                    |              | Days/Wk:          |                     |                  |                 | 5               |                 |        |
|                                                                                                                                                                                                                                                                                                                   |              | •                 | Applicant Data      | 2                |                 | 22              |                 |        |
|                                                                                                                                                                                                                                                                                                                   | Dhase Cand   | Period, Months:   | Appricant Data      | a                |                 | 12              | 1.00            |        |
|                                                                                                                                                                                                                                                                                                                   |              | ,                 |                     |                  |                 |                 | 1.00            | )years |
|                                                                                                                                                                                                                                                                                                                   |              | nst Period, Days: |                     |                  |                 | 260             |                 |        |
| Wet Season Adj                                                                                                                                                                                                                                                                                                    |              |                   |                     | gure 13.2.2-1, 1 | 2/03 or CalEEMo |                 | , lable 1.1.)   |        |
|                                                                                                                                                                                                                                                                                                                   |              | /ear with rain >= |                     |                  |                 | 40              |                 |        |
|                                                                                                                                                                                                                                                                                                                   |              | ns/yrwithrain>=   |                     |                  |                 | 1.33            |                 |        |
|                                                                                                                                                                                                                                                                                                                   | •            | st Period, Months | 5.                  |                  |                 | 10.67           |                 |        |
| A                                                                                                                                                                                                                                                                                                                 | djusted Con  | st Period, Days:  |                     |                  |                 | 220             |                 |        |
|                                                                                                                                                                                                                                                                                                                   |              |                   |                     |                  |                 |                 |                 |        |
| Controlsfor Fug                                                                                                                                                                                                                                                                                                   | gitive Dust: |                   | F                   | Proposed wateri  | ng cycle:       | 3               | times per day   |        |
| 3 watering cycles/8 hour construction shift yields a 68% reduction, use 68% for non-desert sites. (11)(12)<br>Speed control of onsite const traffic to <15 mph yields a 40-70% reduction (use 50% control as conservative for site). (11)(12)<br>Calculated % control based on mitigations proposed: 84 % control |              |                   |                     |                  |                 |                 |                 |        |
|                                                                                                                                                                                                                                                                                                                   |              | Conservative o    | ontrol % used fo    | or emissions est | imates:         | 84              | % control       |        |
|                                                                                                                                                                                                                                                                                                                   |              |                   |                     |                  |                 | 0.16            | releasefraction | 1      |
| Emissions: Cont                                                                                                                                                                                                                                                                                                   | rolled       | PM10              | PM2.5               |                  |                 |                 |                 |        |
| to                                                                                                                                                                                                                                                                                                                | ons/month    | 0.051             | 0.011               |                  |                 |                 |                 |        |
| to                                                                                                                                                                                                                                                                                                                | ons/period   | 0.541             | 0.114               |                  |                 |                 |                 |        |
| Max It                                                                                                                                                                                                                                                                                                            | os/day       | 4.608             | 0.968               |                  |                 |                 |                 |        |
| Soil Handling E                                                                                                                                                                                                                                                                                                   | missions (Cu | ut and Fill): (2) |                     |                  |                 |                 |                 |        |
| Total cu.yds of so                                                                                                                                                                                                                                                                                                | oil handled: |                   | 0                   |                  | Mean annual w   | ind speed, mph  | : (8)           | 8.03   |
| Total tons of soil                                                                                                                                                                                                                                                                                                | handled:     |                   | 0.0                 |                  | Avg. Soil moist | ure, %: (9)     |                 | 5      |
| Total days soil ha                                                                                                                                                                                                                                                                                                | andled:      |                   | 220                 |                  | Avg. Soil densi | ty, tons/cu.yd: |                 | 1.3    |
| Tons soil/day:                                                                                                                                                                                                                                                                                                    |              |                   | 0                   |                  | k factor for PM | • •             |                 | 0.35   |
| Control Eff, wate                                                                                                                                                                                                                                                                                                 | rina.%       |                   | 80                  |                  | Number of Dro   |                 |                 | 4      |
|                                                                                                                                                                                                                                                                                                                   | -            | ase Fraction:     | 0.2                 |                  | Calc 1          | wind            |                 | 1.851  |
|                                                                                                                                                                                                                                                                                                                   |              |                   | 0.2                 |                  | Calc 2          | moisture        |                 | 3.607  |
| Emissions:                                                                                                                                                                                                                                                                                                        | PM10         | PM2.5             |                     |                  | Calc 3          | int             |                 | 0.513  |
| tons/period                                                                                                                                                                                                                                                                                                       | 0.000        | 0.000             |                     |                  | Calc 4          | PM10            | lb/ton          | 0.0006 |
| tons/month                                                                                                                                                                                                                                                                                                        | 0.000        | 0.000             |                     |                  | PM2.5 fraction  |                 | 10/10/1         | 0.210  |
| max lbs/day                                                                                                                                                                                                                                                                                                       | 0.000        | 0.000             |                     |                  | FIVIZ.J HAULIOH | OF FIVETO.      |                 | 0.210  |
| man nuar uay                                                                                                                                                                                                                                                                                                      | 0.000        | 0.000             |                     |                  |                 |                 |                 |        |
|                                                                                                                                                                                                                                                                                                                   |              | EmissionsTot      | als:<br>tons/period | PM 10<br>0.541   | PM 2.5<br>0.114 |                 |                 |        |

## Methodology References:

(1) MRI Report, South Coast AQMD Project No. 95040, March 1996, Level 2 Analysis Procedure.

MRI Report uncontrolled factor of 0.11 tons/acre/month is based on 168 hours per month of const activity.

For an activity rate of ~180 hrs/month, the adjusted EF would be 0.12 tons/acre/month (uncontrolled).

(2) Soil Handling (Cut and Fill), EPA, AP-42, Section 13.2.4., 11/06.

(3) URBEMIS, Version 9.2.4, User's Manual Appendix A, page A-6.

(4) CARB Area Source Methodology, Section 7.7, 9/02.

(5) WRAP Fugitive Dust Handbook, 9/06.

(6) USEPA, AP-42, Section 13.2.3, 2/10.

(7) Estimating PM Emissions from Construction Operations, USEPA, MRI, 9/99.

(8) Wind speed data for Lemoore met station. Annual avg wind speed = 8.03 mph, % calms = 3.44%.

(9) Soil Moisture; 5% assumed avg value

(10) adjusted applicant value based on 10% of total acreage disturbed on any given day

(11) SCAQMD CEQA Handbook 1993.

(12) SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres, Fugitive Dust Mitigations, February 2005.

## OFFSITE PAVED ROAD FUGITIVE DUST EMISSIONS

(associated with delivery truck and worker vehicle traffic on I-5 and plant access road)

| Average mileage for construction related vehicles:      |                                                  | 50              | miles, trip distance***                                                         |                  |                    |                          |
|---------------------------------------------------------|--------------------------------------------------|-----------------|---------------------------------------------------------------------------------|------------------|--------------------|--------------------------|
| Avg weight                                              | of vehicular equ                                 | uipment or      | n road:                                                                         |                  | 4.1                | tons (range 2 - 42 tons) |
| Road surface silt loading factor:                       |                                                  | 0.015           | g/m2 (range 0.03 - 400 g/m2)<br>Limited Access Freeway >10,000 ADT <b>(I-5)</b> |                  |                    |                          |
| Particle size                                           | Particle size multiplier factors: PM10<br>PM2.5  |                 | 0.0022<br>0.00054                                                               | Ib/VMT<br>Ib/VMT |                    |                          |
| C factors (b                                            | rake and tire we                                 | ær):            |                                                                                 | PM10<br>PM2.5    | 0.00047<br>0.00036 | Ib/VMT<br>Ib/VMT         |
| Avg vehicle                                             | speed on road:                                   |                 |                                                                                 |                  | 65                 | mph                      |
| Total Trips                                             |                                                  |                 |                                                                                 |                  | 17843              |                          |
|                                                         |                                                  |                 |                                                                                 |                  |                    | VMT/period: 892150       |
|                                                         |                                                  |                 |                                                                                 |                  |                    |                          |
|                                                         |                                                  | Total ve        | hicles per con                                                                  | nst period:      | 0                  |                          |
|                                                         |                                                  | PM10            |                                                                                 |                  |                    |                          |
|                                                         | Calc 1                                           | 0.022           |                                                                                 |                  |                    |                          |
|                                                         | Calc 2                                           | 4.217           |                                                                                 |                  |                    |                          |
|                                                         | Calc 3                                           | 0.0007          | lb/VMT                                                                          |                  |                    |                          |
|                                                         | Emissions<br>lbs/period                          | PM 10<br>600.50 | PM 2.5<br>101.49                                                                |                  |                    |                          |
|                                                         | tons/period                                      | 0.300           | 0.051                                                                           |                  |                    |                          |
| EPA, AP-42, Section 13.2.1, March 2006, updated 9/2008. |                                                  |                 |                                                                                 |                  |                    |                          |
|                                                         | PM2.5 fraction of PM10 per CARB CEIDARs is 0.169 |                 |                                                                                 |                  |                    |                          |

PM2.5 fraction of PM10 per CARB CEIDARs is 0.169 \*\*\* Note: avg trip distance traveled by delivery or worker vehicles on freeways (I-5) and other State Routes in the

project area.

Vehicles per day: worker + deliveries+staff support vehciles (averages)

## ONSITE UNPAVED ROAD FUGITIVE DUST

\*\* const equipment plus site support pickups plus

| Length of Unpaved Roa                                | ds on Construc                            | tion site:                                | 1                  | miles*                                 | assume 1 mil             | e travel from              | roads                  |
|------------------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------|----------------------------------------|--------------------------|----------------------------|------------------------|
| Avg weight of constructi                             | on vehicular ec                           | uipment on road:                          | 4.1                | tons (range 2                          | - 42 tons)               |                            |                        |
| Road surface silt content<br>Road surface material m |                                           |                                           | 8.5<br>5           | % (range 1.8<br>% (range 0.03          | ,                        |                            |                        |
|                                                      |                                           |                                           | k                  | а                                      | b                        |                            |                        |
| Particle size multiplier fa                          | ctors:                                    | PM10<br>PM2.5                             | 1.5<br>0.15        | 0.9<br>0.9                             | 0.45<br>0.45             |                            |                        |
| C factors (brake and tire                            | wear):                                    | PM10<br>PM2.5                             | 0.00047<br>0.00036 | Ib/VMT<br>Ib/VMT                       |                          |                            |                        |
| Avg construction vehicle                             | speed on road                             | :                                         | 5                  | mph (range 5                           | -55 mph)                 |                            |                        |
| Total Constructon Vehicles                           |                                           |                                           | 11680              | * *                                    |                          | - 1-1-1 4                  |                        |
|                                                      |                                           |                                           |                    |                                        |                          | culated per A<br>T/period: | pplicant data<br>11680 |
|                                                      |                                           |                                           |                    |                                        |                          |                            |                        |
| Control reduction due to                             | watering, spee                            | d control, etc. =                         | 80                 |                                        |                          |                            |                        |
|                                                      |                                           | Release Fraction =                        | 0.8<br>0.2         |                                        |                          |                            |                        |
| Calc 1<br>Calc 2<br>Calc 3<br>Calc 4                 | PM 10<br>0.733<br>1.151<br>1.266<br>1.266 | PM2.5<br>0.733<br>1.151<br>0.127<br>0.127 |                    | Emissions<br>Ibs/period<br>tons/period | PM10<br>2957.93<br>1.479 | PM 2.5<br>296.52<br>0.148  |                        |
| Controlled Ib/VMT<br>EPA, AP-42, Section 13          | 0.253<br>.2.2. March 20                   | 0.025                                     |                    |                                        |                          |                            |                        |
| Soil Moisture; 5% avg                                | er AP-42 for co                           | nstruction site scraper rou               | utes               |                                        |                          |                            |                        |

# CONSTRUCTION PHASE - Truck Hauling/Delivery and Site Support Vehicle Emissions

| All Phases                        |                |       |            |            |                  |            |            |            |             |         |
|-----------------------------------|----------------|-------|------------|------------|------------------|------------|------------|------------|-------------|---------|
| Delivery/Hauling Vehicle Use Rate | s              |       |            | Emissio    | ons Factors (Ibs | s/vmt)     |            |            |             |         |
| Delivery Roundtrip Distance:      | 30             | miles | NOx        | CO         | VOC              | SOx        | PM10       | CO2        |             |         |
| Total Trips                       | 11680          |       | 0.00133459 | 0.00037027 | 6.2834E-05       | 0.000025   | 1.0747E-05 | 2.91617689 | HDDT        |         |
| Avg Deliveriesper Day:            |                |       | 0.00026191 | 0.00201574 | 3.9247E-05       | 0.000011   | 2.7302E-06 | 0.8745735  | MDGT        |         |
| Fraction of Deliveries-Diesel:    | 0.95           | HDDT  |            |            | Daily Emissi     | ons (Ibs)  |            |            |             |         |
| Fraction of Deliveries-Gas:       | 0.05           | MDGT  | NOx        | СО         | VOC              | SOx        | PM 10      | CO2        | PM 2.5      |         |
| Total Delivery VMT:               | 350400         |       | 0.000      | 0.000      | 0.000            | 0.000      | 0.000      | 0.000      | 0.000       | HDDT    |
| Total Daily VMT-Diesel            | 0              |       | 0.000      | 0.000      | 0.000            | 0.000      | 0.000      | 0.000      | 0.000       | MDGT    |
| Total Daily VMT-Gasoline          | 0              |       |            | I          | Fonsper Cons     | t Period   |            |            |             |         |
| Total Period VMT-Diesel           | 332880         |       | 0.222      | 0.062      | 0.010            | 0.004      | 0.002      | 485.4      | 0.001       | HDDT    |
| Total Period VMT-Gasoline         | 17520          |       | 0.002      | 0.018      | 0.000            | 0.000      | 0.000      | 7.7        | 0.000       | MDGT    |
| Construction Site Support Vehicle | Use Rates (LDT | s)    |            |            | Daily Emissio    | ons, Ibs   |            |            |             |         |
| Gasoline Vehicle VMT Period:      | 10800          |       | NOx        | СО         | VOC              | SOx        | PM 10      | CO2        |             |         |
| Avg Daily Gasoline VMT:           | 42             |       | 0.0002232  | 0.00204313 | 3.6203E-05       | 0.000007   | 3.782E-06  | 0.55087942 | lbs/vmt*    | LDT ga  |
| Avg Daily Diesel VMT:             | 0              |       | 0.0093     | 0.0849     | 0.0015           | 0.0003     | 0.0002     | 22.8827    | lbs/day     | gasolin |
| Total Phase Const Days:           | 260            |       |            |            |                  |            |            |            |             |         |
|                                   |                |       |            |            | Tonsper Cor      | nst Period |            |            |             |         |
| Ref: EMFAC 2014, SJVAPCD Yea      | ar 2019        |       | 0.0012     | 0.0110     | 0.0002           | 0.0000     | 0.0000     | 3.0        | tons/period | gasolir |
| LDT1-gas, MDV-gas, HDDT-dsl       |                |       |            |            |                  |            |            |            |             |         |
| See EF data in WSP Support Appen  | dix            |       |            |            |                  |            |            |            |             |         |
|                                   |                |       |            |            |                  |            |            |            |             |         |

Notes \* \* \*

VMT for delivery/hauling for all vehicles includes: (1) materials deliveries to site, (2) materials removal from site, other VMT as specified below. Support Vehicle VMT: best estimate at time of filing, 2 LDT (gasoline) at 30 VMT/day for 260 days CARB-CEIDARS, Updated Fractions for PM Profiles: PM2.5 = 0.991 of PM10 for Diesel Exhaust, and 0.998 for Gasoline Vehicles.

DT DGT DT

GT

PM 2.5 T gasoline 0.0001 line

0.0000 soline

| CONSTRUCTION PHASE - Worker Travel - Emissions |        |                       | Ref: SJVAPCD EMFAC 2014, Year 2023 |             |                |               |          |            |       |
|------------------------------------------------|--------|-----------------------|------------------------------------|-------------|----------------|---------------|----------|------------|-------|
|                                                |        |                       |                                    |             | LDA-gas        |               |          |            |       |
| Worker Travel to Site                          |        |                       |                                    |             | See EF data in | WSP Support A | Appendix |            |       |
| Total Trips                                    | 6163   |                       |                                    |             |                |               |          |            |       |
| A verage distance                              | 20.0   |                       | Emissions Factors (Ibs/VMT)        |             |                |               |          |            |       |
| -                                              |        |                       | NOx                                | CO          | VOC            | SOx           | PM 10    | CO2        |       |
|                                                |        |                       | 8.5075E-05                         | 0.000810295 | 1.5737E-05     | 0.00006       | 0.000004 | 0.56063169 |       |
|                                                |        |                       |                                    |             |                |               |          |            |       |
|                                                |        |                       | Daily Emissions (lbs)              |             |                |               |          |            |       |
|                                                |        |                       | NOx                                | CO          | VOC            | SOx           | PM 10    | CO2        | PM2.5 |
| Total Const Period Worker VMT:                 | 123260 | Avg                   | 0.00                               | 0.00        | 0.00           | 0.00          | 0.00     | 0.00       | 0.00  |
|                                                |        | Tons per Const Period |                                    |             |                |               |          |            |       |
|                                                |        | Avg                   | 0.005                              | 0.050       | 0.001          | 0.000         | 0.000    | 34.6       | 0.000 |

## **CONSTRUCTION PHASE - Trackout Emissions**

| Paved Road Length (miles):                         | 0.1<br>21    | estimated rour   | ndtrip trackout distance |                 |             |
|----------------------------------------------------|--------------|------------------|--------------------------|-----------------|-------------|
| Daily # of Vehicles:<br>Avg Vehicle Weight (tons): | 6.8          |                  | PM 10                    | PM 2.5*         |             |
| Total Unadjusted VMT/day                           | 2.1          |                  | 0.361                    | 1 1012.5        |             |
|                                                    |              |                  |                          |                 |             |
| Particle Size Multipliers                          | PM10         |                  | 1.924                    |                 |             |
| Ib/VMT                                             | 0.023        |                  | 0.002                    | 0.0004          | lb/VMT      |
| C factor, Ib/VMT                                   | 0.00047      |                  | 0.036                    | 0.0062          | lbs/day     |
| Road Sfc Silt Loading (g/m^2):                     | 0.56         | local X 2        | 0.000                    | 0.0001          | tons/month  |
| # of Active Trackout Points:                       | 1            | * *              | 0.00                     | 0.0008          | tons/period |
| Added Trackout Miles:                              | PM10         |                  |                          |                 |             |
| Trackout VMT/day:                                  | 13           |                  | Default Silt Load Valu   | les for Paved l | Road Types  |
| Final Adjusted VMT/day                             | 15           |                  | Freeway                  | 0.02 g/m2       |             |
| Final Adjusted VMT/month                           | 323          |                  | Arterial                 | 0.036 g/m2      |             |
| Final Adjusted VMT/period                          | 3881         |                  | Collector                | 0.036 g/m2      |             |
| Construction days/month:                           | 22           |                  | Local                    | 0.28 g/m2       |             |
| Adj. Construction months/period:                   | 12.00        |                  | Rural                    | 1.6 g/m2        |             |
| Control Applied to Trackout:                       | Gravel entra | nce, metal clear | ning grates, water washi | ng, sweeping    |             |
| Control Efficiency, %                              | 84           | 0.84             | Release Factor =         | 0.16            |             |

\* PM2.5 fraction of PM10 assumed to be 0.169 (CARB CEIDARS updated fraction values) for paved roads.

\*\* 1 controlled ingress/egress point is planned for site construction

EPA, AP-42, Section 13.2.1, Proposed revisions dated 9/2008. Use silt loading factor from default values for road type if no site specific data is available. Trackout effects approximately 0.05 mi. of roadway arriving and departing from the site access point. Plant access road is already paved. Entrance will be gravelled with metal grates for take out control.

Vehicle count = delivery trucks plus site support trucks (see Unpaved Onsite tab)

Worker vehicles not counted for trackout, they will park on the site perimeter.

South Gen

2019

## Tons/Period

|                    |      |      |      |      |       | F      | -ug   | Fug    |
|--------------------|------|------|------|------|-------|--------|-------|--------|
|                    | NOx  | СО   | VOC  | SOx  | PM 10 | CO2    | PM 10 | PM 2.5 |
| on-off site travel | 1.06 | 0.20 | 0.02 | 0.00 | 0.01  | 569.88 | 2.32  | 0.31   |
| Helicopter         | 0.03 | 0.03 | 0.00 | 0.00 | 0.00  | 9.47   | 0.03  | 0.01   |
| on-site equipment  | 8.77 | 5.08 | 1.16 | 0.01 | 0.41  | 1247   |       |        |
| Total              | 9.86 | 5.32 | 1.18 | 0.02 | 0.42  | 1826   | 2.36  | 0.32   |

## Helicopter Emissions Estimates for Transmission Line Projects

Ref: Gateway West Transmission Line DEIS, Tetra Tech EC, Inc., AQ Technical Report, 01/12. Conklin and deDecker Associates, Helicopter CO2 Emissions, Orleans, MA. 02653

| Reference nel copters u  | sed on I-Line pro | DJECTS:    |         |                  |            |
|--------------------------|-------------------|------------|---------|------------------|------------|
| ID/Name                  | Lift Rating       | Work days  | Hrs/day | <b>Total Hrs</b> | LTO/hr     |
| Hughes 500               | Light             | 4          | 8       | 32               | 1.5        |
| Sikorsky Skycrane        | Heavy             | 0          | 0       | 0                | 0.5        |
| <b>Emissions Factors</b> | Light Lift        | Heavy Lift |         | Emissions        | Light Lift |
| CO                       | 2.07              | 2.98       | lbs/hr  | CO               | 0.03       |
| NOx                      | 1.75              | 15.5       | lbs/hr  | NOx              | 0.03       |
| PM10                     | 0.096             | 2.09       | lbs/hr  | PM10             | 0.00       |
| SOx                      | 0.14              | 0.96       | lbs/hr  | SOx              | 0.00       |
| VOC                      | 0.08              | 0.2        | lbs/hr  | VOC              | 0.00       |
| CO2                      | 590               | 3600       | lbs/hr  | CO2              | 9.44       |
|                          |                   |            |         | CO2e             | 9.47       |
|                          | • • • • • •       |            |         |                  |            |

## Reference helicopters used on T-Line projects:

## **Fugitive Dust Emissions from LTO Cycles**

Ref: Huey TPG UH-IH Medium Lift Unit, blade diameter 48 ft., PM fugitive rate at 2 kg/LTO (4.4092 lbs/LTO)

| ID/Name           | Lift Rating | LTO/Hr | Blade Diam, ft | lbs PM/LTO | # LTOs |
|-------------------|-------------|--------|----------------|------------|--------|
| Hughes 500        | Light       | 1.5    | 26.3           | 2.41       | 48     |
| Sikorsky Skycrane | Heavy       | 0.5    | 72             | 6.61       | 0      |

\* based on the WSP project data it was assumed the helicopter type would be a heavy lift unit.

| Fuel type   | Engine Type | # of Engines | Engine/HP   |
|-------------|-------------|--------------|-------------|
| AV kerosene | Turbine     | 1            | 420         |
| AV kerosene | Turbine     | 2            | 4500 (each) |

## Heavy Lift

| 0.00 | tons/period |
|------|-------------|
| 0.00 | tons/period |

### **Period Emissions**

| PM, tons | PM10, tons | PM2.5, tons |
|----------|------------|-------------|
| 0.06     | 0.03       | 0.01        |
| 0.00     | 0.00       | 0.00        |

## CONSTRUCTION EQUIPMENT EXHAUST EMISSIONS

| Project:     | WSP                           | Off Site Construction-Transmission Line Pads and             | l Structures |      |           |
|--------------|-------------------------------|--------------------------------------------------------------|--------------|------|-----------|
| Assumptio    | ons:                          | South Gen Tie                                                |              |      |           |
| 1. The aver  | age engines employed in cor   | struction equipment use consumes fuel at a rate of:          | diesel       | 0.06 | gal/hp-hr |
| Ref: EPA,    | NR-009b Publication, Nover    | nber 2002.                                                   | gasoline     | 0.11 | gal/hp-hr |
| Ref: Sacrar  | mento County APCD Const.      | Program Data, V. 6.0.3, 3/2007.                              |              |      |           |
| Ref: EPA,    | NR-009c Publication, EPA 4    | 20-P-04-009, April 2004.                                     |              |      |           |
| Ref: Niland  | Energy Project, IID, AFC V    | <sup>7</sup> ol 2, App A.                                    |              |      |           |
| Ref: South   | Coast AQMD PR XXI, Dra        | ft Staff Report, 3-15-95, and SCAQMD CEQA Manual, 11/03.     |              |      |           |
| The above    | noted references present fuel | consumption values which range from 0.050 to 0.064 gal/hp-hr |              |      |           |
| for diesel e | ngines used in construction r | elated equipment. The value of 0.060 gal/hp-hr was chosen as |              |      |           |
| a reasonabl  | e upper mid-range value for   | construction diesel emissions calculations.                  |              |      |           |
| For gasolin  | e the mid-range value from S  | SCAQMD of 0.11 gal/hp-hr was used.                           |              |      |           |

2. Construction equipment exhaust emissions will be calculated on an annual basis using the site specific equipment list, HP ratings, hours of use, days of use, etc. Annual emissions will be apportioned to daily values based on the estimated construction period time on site.

3. The equipment list derived from the South Coast AQMD Offroad database (2016) will be used to establish the various equipment categories. Avg HP values were derived from SCAQMD and SacMetro AQMD construction resources.

| 4. Construction Schedule:                                                                                 | 12<br>8<br>1.00 | months<br>hrs/day<br>years | Construction Totals: | 173.33333<br>2080<br>260 | hrs/month<br>hrs/const period<br>days/const period |
|-----------------------------------------------------------------------------------------------------------|-----------------|----------------------------|----------------------|--------------------------|----------------------------------------------------|
| <ol> <li>5. Anticipated Construction Start Year:</li> <li>6. Maximum anticipated equipment use</li> </ol> |                 | 2019<br>n/a                | 7.                   |                          |                                                    |

Equipment types and use rates supplied by the Applicant.

|                               | Weighted<br>Average | # of Units<br>Used for | Avg Use<br>Rate | # of Days<br>On Site | Total   | Total Hrs<br>per Const | Total<br>HP-Hrs |                     |
|-------------------------------|---------------------|------------------------|-----------------|----------------------|---------|------------------------|-----------------|---------------------|
| Equipment Category**          | HP                  | Project                | Hrs/day         | (each)               | Hrs/Day | Period                 | Period          |                     |
| Aerial Lifts                  | 63                  | 1                      | 8               | 320                  | 8       | 2560                   | 161280          |                     |
| Air Compressors               | 78                  | 1                      | 8               | 360                  | 8       | 2880                   | 224640          |                     |
| Bore-Drill Rigs               | 206                 | 1                      | 8               | 180                  | 8       | 1440                   | 296640          |                     |
| Cement Mixers                 | 9                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Concrete/Industrial Saws      | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Cranes                        | 226                 | 1                      | 8               | 230                  | 8       | 1840                   | 415840          |                     |
| Crawler Tractors/Dozers       | 208                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Crushing/Processing Eq.       | 85                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Dumpers/Tenders/Water Trucks  | 16                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Excavators                    | 163                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Forklifts                     | 89                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Generator Sets                | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Graders                       | 175                 | 1                      | 8               | 90                   | 8       | 720                    | 126000          |                     |
| Off-Highway Tractors          | 123                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Off-Highway Trucks            | 400                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Other Diesel Construction Eq. | 172                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Other General Industrial Eq.  | 88                  | 1                      | 8               | 280                  | 8       | 2240                   | 197120          | Pullers, tensioners |
| Other Material Handling Eq.   | 167                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Pavers                        | 126                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Paving Eq. Other              | 131                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Plate Compactors              | 8                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Pressure Washers              | 13                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Pumps                         | 84                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Roller Compactors             | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Rough Terrain Forklifts       | 100                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Rubber Tired Dozers           | 255                 | 1                      | 8               | 390                  | 8       | 3120                   | 795600          |                     |
| Rubber Tires Loaders          | 200                 | 1                      | 8               | 70                   | 8       | 560                    | 112000          |                     |
| Scrapers                      | 362                 | 1                      | 8               | 70                   | 8       | 560                    | 202720          |                     |
| Signal Boards                 | 6                   | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Skid Steer Loaders            | 65                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Surfacing Eq.                 | 254                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Sweepers/Scrubbers            | 64                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Tractors (augers) (single     | 98                  | 1                      | 8               | 300                  | 8       | 2400                   | 235200          |                     |
| Front End Loaders category)   | 98                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Backhoes                      | 98                  | 1                      | 8               | 270                  | 8       | 2160                   | 211680          |                     |
| Trenchers                     | 81                  | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |
| Welders                       | 46                  | 1                      | 8               | 180                  | 8       | 1440                   | 66240           |                     |
| Gasoline Const Eq.            | 175                 | 0                      | 0               | 0                    | 0       | 0                      | 0               |                     |

| ** diesel equipment unless otherwise specified. |
|-------------------------------------------------|
|-------------------------------------------------|

| Const Period Diesel Hp-Hrs =     | 3044960 |      |
|----------------------------------|---------|------|
| Const Period Gasoline Hp-Hrs =   | 0       |      |
| Const Period Diesel Fuel Use =   | 182698  | gals |
| Const Period Gasoline Fuel Use = | 0       | gals |

Offroad equipment emissions factors derived SCAQMD Off Road database for 2016.

The SCAQMD EFs as presented incorporate the average equipment load factors.

Emissions factors for each category of equipment represent the composite factors for the stated equipment category

as derived from the SCAQMD Offroad database for the construction start year.

|                                              |           |        | 2016 Equip | oment Emissi | ons Factors |          |         |
|----------------------------------------------|-----------|--------|------------|--------------|-------------|----------|---------|
| Equip.                                       | lbs/hr    | lbs/hr | lbs/hr     | lbs/hr       | lbs/hr      | lbs/hr   | lbs/hr  |
| Туре                                         | VOC (ROG) | CO     | NOx        | SOx          | PM10        | CO2      | CH4     |
| Aerial Lifts                                 | 0.0397    | 0.1800 | 0.2482     | 0.0004       | 0.0150      | 34.7217  | 0.0036  |
| Air Compressors                              | 0.0704    | 0.3207 | 0.4729     | 0.0007       | 0.0318      | 63.6073  | 0.0064  |
| Bore-Drill Rigs                              | 0.0623    | 0.5016 | 0.5340     | 0.0017       | 0.0160      | 164.9093 | 0.0056  |
| Cement Mixers                                | 0.0088    | 0.0418 | 0.0542     | 0.0001       | 0.0023      | 7.2481   | 0.0008  |
| Concrete/Industrial Saws                     | 0.0756    | 0.3936 | 0.4589     | 0.0007       | 0.0336      | 58.4637  | 0.0068  |
| Cranes                                       | 0.1137    | 0.4263 | 0.9387     | 0.0014       | 0.0388      | 128.6292 | 0.0103  |
| Crawler Tractors/Dozers                      | 0.1335    | 0.5549 | 0.9315     | 0.0013       | 0.0546      | 114.0188 | 0.0120  |
| Crushing/Processing Eq.                      | 0.1337    | 0.6461 | 0.8965     | 0.0015       | 0.0538      | 132.3090 | 0.0121  |
| Dumpers/Tenders                              | 0.0093    | 0.0314 | 0.0587     | 0.0001       | 0.0024      | 7.6244   | 0.0008  |
| Excavators                                   | 0.0988    | 0.5213 | 0.6603     | 0.0013       | 0.0332      | 119.5800 | 0.0089  |
| Forklifts                                    | 0.0427    | 0.2190 | 0.2816     | 0.0006       | 0.0137      | 54.3958  | 0.0039  |
| Generator Sets                               | 0.0581    | 0.2862 | 0.4370     | 0.0007       | 0.0241      | 60.9927  | 0.0052  |
| Graders                                      | 0.1197    | 0.5883 | 0.8866     | 0.0015       | 0.0441      | 132.7430 | 0.0108  |
| Off-Highway Tractors                         | 0.1803    | 0.7067 | 1.4108     | 0.0017       | 0.0670      | 151.4197 | 0.0163  |
| Off-Highway Trucks                           | 0.1816    | 0.5831 | 1.3322     | 0.0027       | 0.0459      | 260.0516 | 0.0164  |
| Other Diesel Construction Eq.                | 0.0720    | 0.3602 | 0.5680     | 0.0013       | 0.0234      | 122.5629 | 0.0065  |
| Other General Industrial Eq.                 | 0.1267    | 0.4731 | 1.0122     | 0.0016       | 0.0425      | 152.2399 | 0.0114  |
| Other Material Handling Eq.                  | 0.1202    | 0.4608 | 0.9913     | 0.0015       | 0.0411      | 141.1941 | 0.0108  |
| Pavers                                       | 0.1269    | 0.5135 | 0.7128     | 0.0009       | 0.0489      | 77.9335  | 0.0114  |
| Paving Eq. Other                             | 0.0965    | 0.4198 | 0.6393     | 0.0008       | 0.0436      | 68.9412  | 0.0087  |
| Plate Compactors                             | 0.0050    | 0.0263 | 0.0314     | 0.0001       | 0.0012      | 4.3138   | 0.0005  |
| Pressure Washers                             | 0.0121    | 0.0579 | 0.0764     | 0.0001       | 0.0044      | 9.4135   | 0.0011  |
| Pumps                                        | 0.0562    | 0.2785 | 0.3830     | 0.0006       | 0.0239      | 49.6067  | 0.0051  |
| Roller Compactors                            | 0.0792    | 0.3944 | 0.5273     | 0.0008       | 0.0353      | 67.0483  | 0.0071  |
| Rough Terrain Forklifts                      | 0.0775    | 0.4549 | 0.5104     | 0.0008       | 0.0372      | 70.2808  | 0.0070  |
| Rubber Tired Dozers                          | 0.2591    | 0.9834 | 2.0891     | 0.0025       | 0.0858      | 239.0905 | 0.0234  |
| Rubber Tires Loaders                         | 0.0983    | 0.4557 | 0.7114     | 0.0012       | 0.0375      | 108.6114 | 0.0089  |
| Scrapers                                     | 0.2383    | 0.9053 | 1.9017     | 0.0027       | 0.0783      | 262.4900 | 0.0215  |
| Signal Boards                                | 0.0161    | 0.0921 | 0.1172     | 0.0002       | 0.0060      | 16.6983  | 0.0014  |
| Skid Steer Loaders                           | 0.0305    | 0.2184 | 0.2044     | 0.0004       | 0.0106      | 30.2770  | 0.0028  |
| Surfacing Eq.                                | 0.1045    | 0.4506 | 0.9731     | 0.0017       | 0.0353      | 165.9721 | 0.0094  |
| Sweepers/Scrubbers                           | 0.0810    | 0.4988 | 0.5192     | 0.0009       | 0.0332      | 78.5433  | 0.0073  |
| Tractors                                     | 0.0610    | 0.3689 | 0.4070     | 0.0008       | 0.0258      | 66.7979  | 0.0055  |
| Front End Loaders                            | 0.0610    | 0.3689 | 0.4070     | 0.0008       | 0.0258      | 66.7979  | 0.0055  |
| Backhoes                                     | 0.0610    | 0.3689 | 0.4070     | 0.0008       | 0.0258      | 66.7979  | 0.0055  |
| Trenchers                                    | 0.1200    | 0.4479 | 0.5719     | 0.0007       | 0.0453      | 58.7146  | 0.0108  |
| Welders                                      | 0.0482    | 0.1951 | 0.2173     | 0.0003       | 0.0168      | 25.6027  | 0.0044  |
| Gasoline Const Eq. (assumed 175 hp category) | 0.0771    | 0.3855 | 1.08       | 0.00014      | 0.1542      | 14.1565  | 0.00037 |
| (gasoline EFs: EPA OMS-AMD Report NR-009A    |           |        |            |              | 2016)       |          |         |

(gasoline EFs: EPA OMS-AMD Report NR-009A, 2-13-98, and SCAQMD EMFAC 2007 CEQA Tables, 2016.)

### Construction Period Emissions, lbs

| Equip. |  |
|--------|--|
| Type   |  |

| Туре                          |      |       |       |       |      |        |         |      |
|-------------------------------|------|-------|-------|-------|------|--------|---------|------|
|                               | VOC  | CO    | NOx   | SOx   | PM10 | CO2    | CH4     |      |
| Aerial Lifts                  | 102  | 461   | 635   | 1     | 38   | 88888  | 9       |      |
| Air Compressors               | 203  | 924   | 1362  | 2     | 92   | 183189 | 18      |      |
| Bore-Drill Rigs               | 90   | 722   | 769   | 3     | 23   | 237469 | 8       |      |
| Cement Mixers                 | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Concrete/Industrial Saws      | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Cranes                        | 209  | 784   | 1727  | 3     | 71   | 236678 | 19      |      |
| Crawler Tractors/Dozers       | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Crushing/Processing Eq.       | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Dumpers/Tenders               | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Excavators                    | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Forklifts                     | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Generator Sets                | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Graders                       | 86   | 424   | 638   | 1     | 32   | 95575  | 8       |      |
| Off-Highway Tractors          | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Off-Highway Trucks            | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Other Diesel Construction Eq. | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Other General Industrial Eq.  | 284  | 1060  | 2267  | 4     | 95   | 341017 | 26      |      |
| Other Material Handling Eq.   | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Pavers                        | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Paving Eq. Other              | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Plate Compactors              | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Pressure Washers              | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Pumps                         | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Roller Compactors             | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Rough Terrain Forklifts       | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Rubber Tired Dozers           | 808  | 3068  | 6518  | 8     | 268  | 745962 | 73      |      |
| Rubber Tires Loaders          | 55   | 255   | 398   | 1     | 21   | 60822  | 5       |      |
| Scrapers                      | 133  | 507   | 1065  | 2     | 44   | 146994 | 12      |      |
| Signal Boards                 | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Skid Steer Loaders            | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Surfacing Eq.                 | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Sweepers/Scrubbers            | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Fractors                      | 146  | 885   | 977   | 2     | 62   | 160315 | 13      |      |
| Front End Loaders             | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Backhoes                      | 132  | 797   | 879   | 2     | 56   | 144283 | 12      |      |
| Frenchers                     | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Welders                       | 69   | 281   | 313   | 0     | 24   | 36868  | 6       |      |
| Gasoline Const Eq.            | 0    | 0     | 0     | 0     | 0    | 0      | 0       |      |
| Subbilite Const Eq.           | 0    | 0     | 0     | 0     | U    | v      | 0       |      |
| Totals                        | VOC  | СО    | NOx   | SOx   | PM10 | PM2.5  | CO2     | CH   |
| lbs per const. period         | 2318 | 10168 | 17549 | 27    | 826  | 818.55 | 2478062 | 209  |
| tons per const. period        | 1.2  | 5.1   | 8.8   | 0.013 | 0.41 | 0.41   | 1239.03 | 0.10 |
| Average lbs/day =             | 8.9  | 39.1  | 67.5  | 0.102 | 3.18 | 3.15   | 9531.01 | 0.80 |
| Normalized TPY =              | 1.2  | 5.1   | 8.8   | 0.0   | 0.4  | 0.4    | 1239.0  | 0.1  |

CO2e, tons/period1246.6CO2e, tons/yr:1246.6

N2O 33 0.02 0.13 0.017

CARB-CEIDARS, Updated Size Fractions for PM Profiles: PM2.5 = 0.991 of PM10 : Diesel Vehicle Exhaust

Other Assumptions and References:

- 1. Trench construction times per: Southern Regional Water Pipeline Alliance, 3/08.
  - Optimum trench construction progress rate is 80m (260ft) per day.
  - Non-optimum trench construction progress rate is 30m (100 ft) per day.
  - An average progress of 180 ft/day is used where applicable.
- 2. Paving speeds can range from 3 to 15 m/min depending on asphalt delivery rates and required compaction thickness.
- A minium paving speed of 3 m/min (10 ft/min or 600 ft/hr) was used where applicable.

The minimum speed is based upon a 3" compacted layer, 12 ft lane width, with an asphalt delivery rate of ~ 140 tons/hr.

- Ref: Asphalt Paving Speed, Pavement Worktip No. 31, AAPA, 11/2001.
- 3. Estimation of maximum daily emissions is extremely variable, and these values are not required by SJVAPCD.
- 4. Construction schedule note: applicant data indicates a construction work day period of 8 hours
  - The equipment use rates provided by the applicant are consistent with an 8 hour workday.
- 5. GWP values: CH4=25, N2O=298, ref: 40 CFR 98 Subpart A, Table A-1.

| CONSTRUCTIO<br>MRI Level 2 Ana |              |                    | 1 and 2          |                  |                  |                  |                 |        |
|--------------------------------|--------------|--------------------|------------------|------------------|------------------|------------------|-----------------|--------|
| Acres Subject to (             |              | -                  | vites:           |                  |                  | 26.4             | 1 acre per towe | r      |
| Max Acres Subje                |              |                    |                  | v dav of this p  | hase:            | 2.6              | note (10)       |        |
| Emissions Factor               |              |                    |                  | .,,              |                  | 0.12             |                 |        |
| PM2.5 fraction of              |              |                    |                  |                  |                  | 0.21             |                 |        |
| Activity Levels:               | r wrio (pa   | Hrs/Day:           |                  |                  |                  | 8                |                 |        |
| Addivity Ecola                 |              | Days/Wk:           |                  |                  |                  | 5                |                 |        |
|                                |              | •                  | Applicant Data   | 5                |                  | 22               |                 |        |
|                                | Phase Cons   | t Period, Months:  | Appricant Date   | A                |                  | 12               | 1.00            | )years |
|                                |              | nst Period, Days:  |                  |                  |                  | 260              | 1.00            | years  |
| Wet Season Adju                |              |                    | ation 1222 Eid   | nuro 12 2 2 1 1  | 2/03 or CalEEMc  |                  |                 |        |
| -                              |              |                    |                  | Jule 13.2.2-1, 1 |                  | 40               |                 |        |
|                                | •            | year with rain >=  |                  |                  |                  |                  |                 |        |
|                                |              | hs/yr with rain >= |                  |                  |                  | 1.33             |                 |        |
|                                | •            | st Period, Months  | <b>.</b>         |                  |                  | 10.67            |                 |        |
| A                              | ajustea Cor  | st Period, Days:   |                  |                  |                  | 220              |                 |        |
| Controlsfor Fug                | gitive Dust: |                    | F                | Proposed wateri  | ng cycle:        | 3                | times per day   |        |
| _                              | -            |                    |                  | -                |                  |                  |                 |        |
| 3 watering cycles/             |              |                    |                  |                  |                  |                  |                 |        |
| Speed control of a             | onsite const |                    | •                | •                |                  | conservative for | , , , , ,       |        |
|                                |              |                    | control based or | • •              | •                | 84               | % control       |        |
|                                |              | Conservative or    | ontrol % used fo | or emissions est | imates:          | 84               | % control       |        |
|                                |              |                    |                  |                  |                  | 0.16             | releasefraction | 1      |
| Emissions: Cont                | rolled       | PM10               | PM2.5            |                  |                  |                  |                 |        |
| tc                             | ons/month    | 0.051              | 0.011            |                  |                  |                  |                 |        |
| to                             | ons/period   | 0.541              | 0.114            |                  |                  |                  |                 |        |
| Max Ib                         | os/day       | 4.608              | 0.968            |                  |                  |                  |                 |        |
| Soil Handling Er               | missions (C  | ut and Fill): (2)  |                  |                  |                  |                  |                 |        |
| Total cu.yds of so             | •            |                    | 0                |                  | Mean annual w    | ind speed, mph   | : (8)           | 8.03   |
| Total tons of soil             |              |                    | 0.0              |                  | Avg. Soil moist  |                  | (-)             | 5      |
| Total days soil ha             |              |                    | 220              |                  | Avg. Soil densi  | . ,              |                 | 1.3    |
| Tons soil/day:                 |              |                    | 0                |                  | k factor for PM  | • •              |                 | 0.35   |
| Control Eff, wate              | rina %       |                    | 80               |                  | Number of Dro    | -                |                 | 4      |
|                                | -            | ase Fraction:      | 0.2              |                  | Calc 1           | wind             |                 | 1.851  |
|                                | NGC          |                    | 0.2              |                  | Calc 2           | moisture         |                 | 3.607  |
| Emissions:                     | PM10         | PM2.5              |                  |                  | Calc 3           | int              |                 | 0.513  |
|                                | 0.000        | 0.000              |                  |                  | Calc 3<br>Calc 4 | PM10             | lb/ton          | 0.0006 |
| tons/period                    |              |                    |                  |                  |                  |                  | ID/IOI          |        |
| tons/month                     | 0.000        | 0.000              |                  |                  | PM2.5 fraction   | OF PIVETU:       |                 | 0.210  |
| max Ibs/day                    | 0.000        | 0.000              |                  |                  |                  |                  |                 |        |
|                                |              | EmissionsTot       | als              | PM 10            | PM 2.5           |                  |                 |        |
|                                |              |                    | tons/period      | 0.541            | 0.114            |                  |                 |        |

## Methodology References:

(1) MRI Report, South Coast AQMD Project No. 95040, March 1996, Level 2 Analysis Procedure.

MRI Report uncontrolled factor of 0.11 tons/acre/month is based on 168 hours per month of const activity.

For an activity rate of ~180 hrs/month, the adjusted EF would be 0.12 tons/acre/month (uncontrolled).

(2) Soil Handling (Cut and Fill), EPA, AP-42, Section 13.2.4., 11/06.

(3) URBEMIS, Version 9.2.4, User's Manual Appendix A, page A-6.

(4) CARB Area Source Methodology, Section 7.7, 9/02.

(5) WRAP Fugitive Dust Handbook, 9/06.

(6) USEPA, AP-42, Section 13.2.3, 2/10.

(7) Estimating PM Emissions from Construction Operations, USEPA, MRI, 9/99.

(8) Wind speed data for Lemoore met station. Annual avg wind speed = 8.03 mph, % calms = 3.44%.

(9) Soil Moisture; 5% assumed avg value

(10) adjusted applicant value based on 10% of total acreage disturbed on any given day

(11) SCAQMD CEQA Handbook 1993.

(12) SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres, Fugitive Dust Mitigations, February 2005.

## OFFSITE PAVED ROAD FUGITIVE DUST EMISSIONS

(associated with delivery truck and worker vehicle traffic on I-5 and plant access road)

| Average mi   | leage for constr           | uction rela                      | ted vehicles:  |               | 50                 | miles, roundtrip distance***                                                    |
|--------------|----------------------------|----------------------------------|----------------|---------------|--------------------|---------------------------------------------------------------------------------|
| Avg weight   | of vehicular ec            | luipment oi                      | n road:        |               | 4.1                | tons (range 2 - 42 tons)                                                        |
| Road surfac  | cesiltloadingfa            | actor:                           |                |               | 0.015              | g/m2 (range 0.03 - 400 g/m2)<br>Limited Access Freeway >10,000 ADT <b>(I-5)</b> |
| Particlesize | emultiplierfac             | tors:                            |                | PM10<br>PM2.5 | 0.0022<br>0.00054  | Ib/VMT<br>Ib/VMT                                                                |
| C factors (b | orake and tire w           | ear):                            |                | PM10<br>PM2.5 | 0.00047<br>0.00036 | Ib/VMT<br>Ib/VMT                                                                |
| Avgvehide    | e speed on road:           |                                  |                |               | 65                 | mph                                                                             |
| Total Trips  |                            |                                  |                |               | 17843              |                                                                                 |
|              |                            |                                  |                |               |                    | VMT/period: 892150                                                              |
|              |                            |                                  |                |               |                    | adjusted for precip events                                                      |
|              |                            | Total ve                         | hicles per con | st period:    | 0                  |                                                                                 |
|              | Calc 1<br>Calc 2<br>Calc 3 | PM10<br>0.022<br>4.217<br>0.0007 | Ib/VMT         |               |                    |                                                                                 |
|              | Emissions                  | PM 10                            | PM 2.5         |               |                    |                                                                                 |

lbs/period 600.50 101.49 tons/period 0.300 0.051

EPA, AP-42, Section 13.2.1, March 2006, updated 9/2008. PM2.5 fraction of PM10 per CARB CEIDARs is 0.169 \*\*\* Note: avg roundtrip distance traveled by delivery or worker vehicles on freeways (I-5) and other State Routes in the

project area.

Vehicles per day: worker + deliveries+staff support vehciles (averages)

## ONSITE UNPAVED ROAD FUGITIVE DUST

| Length of Unpaved Roads                                 | on Construc                     | tion site:                                             | 1                  | miles*                        | assume 1 mi      | le travel from roads                          |
|---------------------------------------------------------|---------------------------------|--------------------------------------------------------|--------------------|-------------------------------|------------------|-----------------------------------------------|
| Avg weight of construction                              | n vehicular e                   | quipment on road:                                      | 4.1                | tons (range 2                 | - 42 tons)       |                                               |
| Road surface silt content:<br>Road surface material moi | sture content                   |                                                        | 8.5<br>5           | % (range 1.8<br>% (range 0.03 | ,                |                                               |
|                                                         |                                 |                                                        | k                  | а                             | b                |                                               |
| Particle size multiplier fac                            | tors:                           | PM10<br>PM2.5                                          | 1.5<br>0.15        | 0.9<br>0.9                    | 0.45<br>0.45     |                                               |
| C factors (brake and tire w                             | vear):                          | PM10<br>PM2.5                                          | 0.00047<br>0.00036 | Ib/VMT<br>Ib/VMT              |                  |                                               |
| Avg construction vehicles                               | peed on road                    | ł:                                                     | 5                  | mph (range 5                  | -55 mph)         |                                               |
| Total Construction Vehicle                              | es                              |                                                        | 11680              | * *                           |                  |                                               |
|                                                         |                                 |                                                        |                    |                               |                  | culated per Applicant data<br>T/period: 11680 |
|                                                         |                                 |                                                        |                    |                               |                  |                                               |
|                                                         |                                 |                                                        |                    |                               |                  |                                               |
|                                                         |                                 |                                                        |                    |                               |                  |                                               |
| Control reduction due to w                              | vatering, spe                   | ed control, etc. =                                     | 80                 |                               |                  |                                               |
| Control reduction due to w                              | vatering, spea                  |                                                        | 0.8                |                               |                  |                                               |
| Control reduction due to w                              | /atering, spea                  | ed control, etc. =<br>Release Fraction =               |                    |                               |                  |                                               |
| Control reduction due to w                              |                                 | Release Fraction =                                     | 0.8                | Emissions                     | PM 10            | PM 2 5                                        |
|                                                         | PM10                            | Release Fraction = PM2.5                               | 0.8                | Emissions                     | PM 10<br>2957 93 | PM 2.5<br>296 52                              |
| Calc 1                                                  | PM10<br>0.733                   | Release Fraction =<br>PM2.5<br>0.733                   | 0.8                | lbs/period                    | 2957.93          | 296.52                                        |
| Calc 1<br>Calc 2                                        | PM10<br>0.733<br>1.151          | Release Fraction =<br>PM2.5<br>0.733<br>1.151          | 0.8                |                               |                  |                                               |
| Calc 1                                                  | PM10<br>0.733<br>1.151<br>1.266 | Release Fraction =<br>PM2.5<br>0.733<br>1.151<br>0.127 | 0.8                | lbs/period                    | 2957.93          | 296.52                                        |
| Calc 1<br>Calc 2<br>Calc 3                              | PM10<br>0.733<br>1.151          | Release Fraction =<br>PM2.5<br>0.733<br>1.151          | 0.8                | lbs/period                    | 2957.93          | 296.52                                        |

EPA, AP-42, Section 13.2.2, March 2006

Soil Moisture; 5% avg Soil silt content: 8.5% per AP-42 for construction site scraper routes \*\* const equipment plus site support pickups plus

#### CONSTRUCTION PHASE - Truck Hauling/Delivery and Site Support Vehicle Emissions All Phases

| All Phases                       |        |       |           |           |                |             |           |           |        |      |
|----------------------------------|--------|-------|-----------|-----------|----------------|-------------|-----------|-----------|--------|------|
| Delivery/Hauling Vehicle Use Rat | tes    |       |           | Emissi    | ons Factors (I | bs/vmt)     |           |           |        |      |
| Delivery Roundtrip Distance:     | 30     | miles | NOx       | CO        | VOC            | SOx         | PM10      | CO2       |        |      |
| Total Trips                      | 11680  |       | 0.0062534 | 0.0005153 | 0.0001138      | 0.000026    | 3.984E-05 | 3.1064617 | HDDT   |      |
| Avg Deliveries per Day:          |        |       | 0.0004698 | 0.0034003 | 7.817E-05      | 0.000013    | 2.92E-06  | 1.0236164 | MDGT   |      |
| Fraction of Deliveries-Diesel:   | 0.95   | HDDT  |           |           | Daily Emis     | sions (Ibs) |           |           |        |      |
| Fraction of Deliveries-Gas:      | 0.05   | MDGT  | NOx       | СО        | VOC            | SOx         | PM 10     | CO2       | PM 2.5 |      |
| Total Delivery VMT:              | 350400 |       | 0.000     | 0.000     | 0.000          | 0.000       | 0.000     | 0.000     | 0.000  | HDD  |
| Total Daily VMT-Diesel           | 0      |       | 0.000     | 0.000     | 0.000          | 0.000       | 0.000     | 0.000     | 0.000  | MDG  |
| Total Daily VMT-Gasoline         | 0      |       |           | -         | Tonsper Cor    | nst Period  |           |           |        |      |
| Total Period VMT-Diesel          | 332880 |       | 1.041     | 0.086     | 0.019          | 0.004       | 0.007     | 517.0     | 0.006  | HDDT |
| Total Period VMT-Gasoline        | 17520  |       | 0.004     | 0.030     | 0.001          | 0.000       | 0.000     | 9.0       | 0.000  | MDG  |
|                                  |        |       |           |           |                |             |           |           |        |      |

| uction Site Support Vehicle                                                                 | e Use Rates (LDTs) |           |           | Daily Emissi | ions, Ibs  |           |           |             |              |   |
|---------------------------------------------------------------------------------------------|--------------------|-----------|-----------|--------------|------------|-----------|-----------|-------------|--------------|---|
| bline Vehicle VMT Period:                                                                   | 10800              | NOx       | СО        | VOC          | SOx        | PM 10     | CO2       |             |              |   |
| Daily Gasoline VMT:                                                                         | 42                 | 0.0004076 | 0.0035926 | 6.999E-05    | 0.000008   | 5.072E-06 | 0.6541839 | lbs/vmt*    | LDT gasoline |   |
| Daily Diesel VMT:                                                                           | 0                  | 0.0169    | 0.1492    | 0.0029       | 0.0003     | 0.0002    | 27.1738   | lbs/day     | gasoline     |   |
| al Phase Const Days:                                                                        | 260                |           |           |              |            |           |           |             |              |   |
|                                                                                             |                    |           |           | Tonsper Co   | nst Period |           |           |             |              |   |
| af: EMFAC 2014, SJVAPCD Yea<br>DT1-gas, MDV-gas, HDDT-dsl<br>æ EF data in WSP Support Appen |                    | 0.0022    | 0.0194    | 0.0004       | 0.0000     | 0.0000    | 3.5       | tons/period | gasoline     | ( |

## Notes \*\*\*

VMT for delivery/hauling for all vehicles includes: (1) materials deliveries to site, (2) materials removal from site, other VMT as specified below. Support Vehicle VMT: best estimate at time of filing, 2 LDT (gasoline) at 30 VMT/day for 260 days

CARB-CEIDARS, Updated Fractions for PM Profiles: PM2.5 = 0.991 of PM10 for Diesel Exhaust, and 0.998 for Gasoline Vehicles.

| CONSTRUCTION PHASE - Worker T  | CONSTRUCTION PHASE - Worker Travel - Emissions |            |                                     |           |                  | Ref: SJVAPCD EMFAC 2014, Year 2020<br>LDA-gas |            |      |       |  |  |  |
|--------------------------------|------------------------------------------------|------------|-------------------------------------|-----------|------------------|-----------------------------------------------|------------|------|-------|--|--|--|
| Worker Travel to Site          |                                                |            | See EF data in WSP Support Appendix |           |                  |                                               |            |      |       |  |  |  |
| Total Trips                    | 6163                                           |            |                                     |           |                  |                                               |            |      |       |  |  |  |
| Average distance               | 20.0                                           |            |                                     | Emissio   | ns Factors (Ibs/ | VMT)                                          |            |      |       |  |  |  |
|                                |                                                |            | NOx                                 | CO        | VOC              | SOx                                           | PM10       | CO2  |       |  |  |  |
|                                |                                                | 0.00013058 | 0.001103197                         | 2.504E-05 | 0.000007         | 0.000004                                      | 0.65463696 |      |       |  |  |  |
|                                |                                                |            |                                     |           |                  |                                               |            |      |       |  |  |  |
|                                |                                                |            |                                     | Da        | aily Emissions   | (lbs)                                         |            |      |       |  |  |  |
|                                |                                                |            | NOx                                 | CO        | VOC              | SOx                                           | PM10       | CO2  | PM2.5 |  |  |  |
| Total Const Period Worker VMT: | 123260                                         | Avg        | 0.00                                | 0.00      | 0.00             | 0.00                                          | 0.00       | 0.00 | 0.00  |  |  |  |
|                                |                                                |            |                                     |           |                  |                                               |            |      |       |  |  |  |
|                                |                                                |            |                                     | То        | nsperConstF      | Period                                        |            |      |       |  |  |  |
|                                |                                                | Avg        | 0.008                               | 0.068     | 0.002            | 0.000                                         | 0.000      | 40.3 | 0.000 |  |  |  |

#### **CONSTRUCTION PHASE - Trackout Emissions**

| Paved Road Length (miles):       | 0.1          | estimated rou   | Indtrip trackout distance |                 |             |
|----------------------------------|--------------|-----------------|---------------------------|-----------------|-------------|
| Daily # of Vehicles:             | 21           |                 |                           |                 |             |
| Avg Vehicle Weight (tons):       | 6.8          |                 | PM 10                     | PM 2.5*         |             |
| Total Unadjusted VMT/day         | 2.1          |                 | 0.361                     |                 |             |
| Particle Size Multipliers        | PM10         |                 | 1.924                     |                 |             |
| Ib/VMT                           | 0.023        |                 | 0.002                     | 0.0004          | lb/VMT      |
| C factor, Ib/VMT                 | 0.00047      |                 | 0.036                     | 0.0062          | lbs/day     |
| Road Sfc Silt Loading (g/m^2):   | 0.56         | local X 2       | 0.000                     | 0.0001          | tons/month  |
| # of Active Trackout Points:     | 1            | **              | 0.00                      | 0.0008          | tons/period |
| Added Trackout Miles:            | PM10         |                 |                           |                 |             |
| Trackout VMT/day:                | 13           |                 | Default Silt Load Valu    | les for Paved I | Road Types  |
| Final Adjusted VMT/day           | 15           |                 | Freeway                   | 0.02 g/m2       |             |
| Final Adjusted VMT/month         | 323          |                 | Arterial                  | 0.036 g/m2      |             |
| Final Adjusted VMT/period        | 3881         |                 | Collector                 | 0.036 g/m2      |             |
| Construction days/month:         | 22           |                 | Local                     | 0.28 g/m2       |             |
| Adj. Construction months/period: | 12.00        |                 | Rural                     | 1.6 g/m2        |             |
| Control Applied to Trackout:     | Gravel entra | nce, metal clea | ning grates, water washi  | ng, sweeping    |             |
| Control Efficiency, %            | 84           | 0.84            | Release Factor =          | 0.16            |             |

\* PM2.5 fraction of PM10 assumed to be 0.169 (CARB CEIDARS updated fraction values) for paved roads.

\*\* 1 controlled ingress/egress point is planned for site construction

EPA, AP-42, Section 13.2.1, Proposed revisions dated 9/2008.

Use silt loading factor from default values for road type if no site specific data is available.

Trackout effects approximately 0.05 mi. of roadway arriving and departing from the site access point.

Plant access road is already paved. Entrance will be gravelled with metal grates for take out control.

Vehicle count = delivery trucks plus site support trucks (see Unpaved Onsite tab)

Worker vehicles not counted for trackout, they will park on the site perimeter.

# SGF 2,3 and South Gen Tie Overlap

|               |     |   |     |          |          |           |   | % Overlap |      |
|---------------|-----|---|-----|----------|----------|-----------|---|-----------|------|
|               |     |   |     |          |          |           |   | 2019      | 2020 |
| SGF 2         | 250 | 1 | 210 | 43       | 1-Nov-18 | 31-Aug-19 | T | 1         |      |
| <b>30</b> F 2 | 230 | 2 | 300 | 43<br>61 | 1-Jun-19 | 31-Jul-20 |   | 0.52      | 0.42 |
|               |     | 3 | 150 | 30       | 1-Apr-20 | 31-Oct-20 |   |           |      |
|               |     |   |     |          |          | 23        |   |           |      |
| SGF 3         | 250 | 1 | 210 | 43       | 1-Jan-20 | 31-Oct-20 |   |           |      |
|               |     | 2 | 300 | 61       | 1-Aug-20 | 30-Sep-21 |   |           | 0.50 |
|               |     | 3 | 150 | 30       | 1-Jun-21 | 31-Dec-21 |   |           |      |
|               |     |   |     |          |          | 24        |   |           |      |
| South Gen     |     |   |     |          | 1-Jan-19 | 31-Dec-19 |   | 1.00      |      |

## Overlap SGF2 /South Gen

|                  |          |          |          |          |             |          | Fug      | Fug      |
|------------------|----------|----------|----------|----------|-------------|----------|----------|----------|
| Total Emissions  | NOx      | CO       | VOC      | SOx      | PM 10       | CO2      | PM 10    | PM 2.5   |
| SGF 2            | 26.92259 | 16.75746 | 3.393851 | 0.084367 | 1.044509412 | 7995.93  | 9.139774 | 1.679576 |
| South Gen Tie In | 9.857817 | 5.320083 | 1.18171  | 0.020455 | 0.421460873 | 1825.984 | 2.359079 | 0.319184 |
| SGF3             | 24.45172 | 13.13011 | 3.277872 | 0.05401  | 1.019007753 | 5221.69  | 5.797572 | 1.081314 |
| Gates            | 1.567632 | 0.96093  | 0.210929 | 0.003823 | 0.063087216 | 362.7886 | 0.074837 | 0.012328 |
|                  |          |          |          |          |             |          |          |          |
| 2019             | 25.43    | 14.99    | 3.16     | 0.07     | 1.03        | 6347     | 7.19     | 1.20     |
| 2020             | 23.53    | 13.60    | 3.06     | 0.06     | 0.95        | 5969     | 6.74     | 1.25     |

# Westlands Solar Park - Construction - Off-Site Vehicle Usage

# Solar Generating Facilities

| Vehicles                                           |           | Estima      | ated Usage |                   |            |              | Truck Trip Estimate | s          |            |                      |            |                        |            |
|----------------------------------------------------|-----------|-------------|------------|-------------------|------------|--------------|---------------------|------------|------------|----------------------|------------|------------------------|------------|
|                                                    | Units     | Miles/Round | F          | Round Trips per l | Jnit       |              |                     |            |            |                      |            |                        |            |
|                                                    |           | Trip        | 100 MW SGF | 150 MW SGF        | 250 MW SGF |              | 100 MW SGF          | 150 MW SGF | 250 MW SGF |                      |            |                        |            |
| Phase 1 – Site Preparation                         |           |             |            |                   |            |              |                     |            |            |                      |            |                        |            |
| Water Trucks                                       | 5         | 85          | 1          | 1                 | 1          |              | 5                   | 5          | 5          |                      |            |                        |            |
| Flat Bed Trucks                                    | 12        | 85          | 2          | 3                 | 4          |              | 24                  | 36         | 48         |                      |            |                        |            |
| Gravel Trucks (End Dump)(Delivery)                 | 18        | 56          | 85         | 125               | 210        |              | 1530                | 2250       | 3780       |                      |            |                        |            |
| Equipment Transport Trucks (Delivery)              | 24        | 85          | 12         | 18                | 30         |              | 288                 | 432        | 720        |                      |            |                        |            |
| Worker Vehicles                                    | 140       | 90          | 85         | 125               | 210        |              |                     |            |            |                      |            |                        |            |
| Phase 2 – Installation of Solar Arrays             |           |             |            |                   |            |              |                     |            |            |                      |            |                        |            |
| Water Trucks                                       | 4         | 85          | 1          | 1                 | 1          |              | 4                   | 4          | 4          |                      |            |                        |            |
| Freight Trucks (Delivery)                          | 19        | 400         | 110        | 165               | 275        |              | 2090                | 3135       | 5225       |                      |            |                        |            |
| Equipment Transport Trucks (Delivery)              | 7         | 85          | 3          | 6                 | 10         |              | 21                  | 42         | 70         |                      |            |                        |            |
| Service Trucks                                     | 3         | 85          | 110        | 165               | 275        |              | 330                 | 495        | 825        |                      |            |                        |            |
| Worker Vehicles                                    | 290       | 90          | 120        | 180               | 300        |              |                     |            |            |                      |            |                        |            |
| Phase 3 – Installation of Inverters, Transformers, |           |             |            |                   |            |              |                     |            |            |                      |            |                        |            |
| Substation, Interconnection                        |           |             |            |                   |            |              |                     |            |            | Total VMT            | 100 MW SGF | 150 MW SGF             | 250 MW SGF |
| Water Trucks                                       | 1         | 85          | 1          | 1                 | 1          |              | 1                   | 1          | 1          |                      |            |                        |            |
| Ready Mix (Delivery)                               | 3         | 50          | 100        | 150               | 250        |              | 300                 | 450        | 750        | Trucks - roundtrips  |            |                        |            |
| Freight (Delivery)                                 | 1         | 400         | 60         | 90                | 150        |              | 60                  | 90         | 150        | vmt                  | 994,085    | 1,489,075              | 2,481,715  |
| Equipment Transport Trucks (Delivery)              | 1         | 85          | 8          | 12                | 18         |              | 8                   | 12         | 18         | Workers - roundtrips |            |                        |            |
| Worker Vehicles                                    | 40        | 90          | 65         | 95                | 160        |              |                     |            |            | vmt                  | 4,437,000  | 6,615,000              | 11,052,000 |
| Source: Tranquillity                               | Total wor |             | 49300      |                   |            | Total Truck: | 4661                | 6952       | 11596      | Total VMT            | 5,431,085  | <mark>8,104,075</mark> | 13,533,715 |
|                                                    |           | per day     | 224        | 334               | 558        |              |                     |            |            |                      |            |                        |            |

| Subarea | MW  |
|---------|-----|
| 1       | 100 |
| 2       | 160 |
| 3       | 90  |
| 4       | 220 |
| 5       | 180 |
| 6       | 170 |
| 7       | 110 |
| 8       | 250 |
| 9       | 250 |
| 10      | 150 |
| 11      | 200 |
| 12      | 120 |

## **Totals Scaled to Project Size**

| Worker trips | Truck Trips | Total Trips | Worker VMT | Truck VMT | Total VMT  |
|--------------|-------------|-------------|------------|-----------|------------|
|              |             |             |            |           |            |
| 49300        | 4661        | 53961       | 4,437,000  | 994,085   | 5,431,085  |
| 78400        | 7415        | 85815       | 7056000    | 1,588,347 | 8,644,347  |
| 44370        | 4195        | 48565       | 3993300    | 894,677   | 4,887,977  |
| 108064       | 10204       | 118268      | 9725760    | 2,183,909 | 11,909,669 |
| 88200        | 8342        | 96542       | 7938000    | 1,786,890 | 9,724,890  |
| 83300        | 7879        | 91179       | 7497000    | 1,687,618 | 9,184,618  |
| 54230        | 5127        | 59357       | 4880700    | 1,093,494 | 5,974,194  |
| 122800       | 11596       | 134396      | 11,052,000 | 2,481,715 | 13,533,715 |
| 122800       | 11596       | 134396      | 11,052,000 | 2,481,715 | 13,533,715 |
| 73500        | 6952        | 80452       | 6,615,000  | 1,489,075 | 8,104,075  |
| 98240        | 9277        | 107517      | 8841600    | 1,985,372 | 10,826,972 |
| 59160        | 5593        | 64753       | 5324400    | 1,192,902 | 6,517,302  |

## percentage

9%

9%

9%

9%

9%

9%

9% 9%

9%

9%

9% 9%

# Westlands Solar Park - Construction - Off-Site Vehicle Usage

## **Solar Generating Facilities**

| Vehicles                                           |             | Estimat             | ted Usage  |                  |              | Vehicles                              | Estimated Usage |                     |                     | -        |
|----------------------------------------------------|-------------|---------------------|------------|------------------|--------------|---------------------------------------|-----------------|---------------------|---------------------|----------|
|                                                    | Units       | Miles/Round<br>Trip |            | ound Trips per L |              | Construction Duration – 170 work days | Units           | Miles/Round<br>Trip | Round<br>Trips/Unit |          |
| Phase 1 – Site Preparation                         |             |                     | 100 MW SGF | 150 MW SGF       | 250 IVIW SGF |                                       |                 |                     |                     |          |
| Water Trucks                                       | 5           | 85                  | 1          | 1                | 1            | Water Trucks                          | 1               | 85                  | 1                   |          |
| Flat Bed Trucks                                    | 12          | 85                  | 2          | 3                | 4            | Concrete and Gravel Delivery          | 9               | 56                  | 18                  |          |
| Gravel Trucks (End Dump)(Delivery)                 | 18          | 56                  | 85         | 125              | 210          | Equipment Transport Trucks (Delivery) | 4               | 85                  | 6                   |          |
| Equipment Transport Trucks (Delivery)              | 24          | 85                  | 12         | 18               | 30           | Freight Trucks (Delivery)             | 4               | 400                 | 85                  |          |
| Worker Vehicles                                    | 140         | 90                  | 85         | 125              | 210          | Worker Vehicles                       | 6               | 90                  | 170                 |          |
| Phase 2 – Installation of Solar Arrays             |             |                     |            |                  |              |                                       |                 |                     |                     | ļ        |
| Water Trucks                                       | 4           | 85                  | 1          | 1                | 1            | Source: Tranquillity                  |                 |                     |                     |          |
| Freight Trucks (Delivery)                          | 19          | 400                 | 110        | 165              | 275          |                                       |                 |                     |                     |          |
| Equipment Transport Trucks (Delivery)              | 7           | 85                  | 3          | 6                | 10           |                                       |                 |                     |                     |          |
| Service Trucks                                     | 3           | 85                  | 110        | 165              | 275          |                                       |                 |                     |                     |          |
| Worker Vehicles                                    | 290         | 90                  | 120        | 180              | 300          |                                       |                 |                     |                     |          |
| Phase 3 – Installation of Inverters, Transformers, |             |                     |            |                  |              |                                       |                 |                     |                     |          |
| Substation, Interconnection                        |             |                     |            |                  |              | Total VMT                             |                 | 100 MW SGF          | 150 MW SGF          | 250 MW S |
| Water Trucks                                       | 1           | 85                  | 1          | 1                | 1            |                                       |                 |                     |                     |          |
| Ready Mix (Delivery)                               | 3           | 50                  | 100        | 150              | 250          | Trucks - roundtrips                   |                 |                     |                     |          |
| Freight (Delivery)                                 | 1           | 400                 | 60         | 90               | 150          | vm                                    | nt              | 994,085             | 1,489,075           | 2,481,   |
| Equipment Transport Trucks (Delivery)              | 1           | 85                  | 8          | 12               | 18           | Workers - roundtrips                  |                 |                     |                     |          |
| Worker Vehicles                                    | 40          | 90                  | 65         | 95               | 160          | vm                                    | nt              | 4,437,000           | 6,615,000           | 11,052,  |
| Source: Tranquillity                               | Total worke | er:                 | 49300      | 73500            | 122800       | Total VMT                             |                 | 5,431,085           | 8,104,075           | 13,533,  |
|                                                    |             | per day             | 224        | 334              | 558          |                                       |                 |                     |                     |          |

# Westlands Solar Park - Construction - On-Site Equipment Usage

# Solar Generating Facilities

| Equipment                                          | Estimated Usage |               |            |               |            |  |  |  |
|----------------------------------------------------|-----------------|---------------|------------|---------------|------------|--|--|--|
|                                                    |                 | Hours/Day     |            | Days per Unit |            |  |  |  |
| Phase 1 – Site Preparation                         | Units           | (5 days/week) | 100 MW SGF | 150 MW SGF    | 250 MW SGF |  |  |  |
| Water Trucks                                       | 5               | 7             | 85         | 125           | 210        |  |  |  |
| Bulldozers                                         | 3               | 7             | 85         | 125           | 210        |  |  |  |
| Graders                                            | 5               | 7             | 43         | 65            | 108        |  |  |  |
| Compactors                                         | 1               | 7             | 17         | 25            | 42         |  |  |  |
| Skid Loaders                                       | 1               | 7             | 75         | 113           | 188        |  |  |  |
| Asphalt Pavers                                     | 1               | 4             | 11         | 17            | 28         |  |  |  |
| Front-End Loaders                                  | 1               | 7             | 33         | 50            | 83         |  |  |  |
| Phase 2 – Installation of Solar Arrays             |                 |               |            |               |            |  |  |  |
| Water Trucks                                       | 1               | 7             | 62         | 93            | 154        |  |  |  |
| Tractors – post drivers                            | 2               | 7             | 98         | 147           | 245        |  |  |  |
| Forklifts                                          | 6               | 7             | 88         | 132           | 220        |  |  |  |
| Trenchers                                          | 9               | 4             | 98         | 147           | 245        |  |  |  |
| Flat Bed Trucks                                    | 12              | 7             | 88         | 132           | 220        |  |  |  |
| Phase 3 – Installation of Inverters, Transformers, |                 |               |            |               |            |  |  |  |
| Substation, Interconnection                        |                 |               |            |               |            |  |  |  |
| Water Trucks                                       | 1               | 7             | 56         | 84            | 140        |  |  |  |
| Forklifts                                          | 2               | 4             | 56         | 84            | 140        |  |  |  |
| Trenchers                                          | 1               | 4             | 58         | 86            | 144        |  |  |  |
| Backhoes                                           | 1               | 4             | 63         | 95            | 158        |  |  |  |
| Cranes                                             | 1               | 2             | 38         | 56            | 94         |  |  |  |
| Aerial Lifts                                       | 1               | 6             | 38         | 56            | 94         |  |  |  |

## 230 kV Switching Stations

| Equipment                        |        | Estimated Usage          |           |  |  |  |  |  |
|----------------------------------|--------|--------------------------|-----------|--|--|--|--|--|
| Construction Duration – 170 days | Units  | Hours/Day<br>(5 days/wk) | Days/Unit |  |  |  |  |  |
| Water Truck                      | 1      | 6                        | 170       |  |  |  |  |  |
| Grader                           | 1      | 8                        | 40        |  |  |  |  |  |
| Scraper                          | 1      | 8                        | 14        |  |  |  |  |  |
| Excavator                        | 1      | 8                        | 25        |  |  |  |  |  |
| Roller                           | 1      | 8                        | 2         |  |  |  |  |  |
| Asphalt Paver                    | 1      | 8                        | 25        |  |  |  |  |  |
| Forklift<br>Generator Set        | 1<br>1 | 8<br>x                   | 60<br>40  |  |  |  |  |  |
| Crane                            | 1      | 8                        | 4         |  |  |  |  |  |

Source: Tranquillity

Source: Tranquillity

#### **Operational Exhaust Emissions Estimates**

The WSP project does not become fully operationl until 2030, while most of the emissionsfactor databases end at 2025-2026. The emissions presented herein are for the first operational year after the completion of construction, i.e., 2030.

| Project:               | WSP               |                    |                  |                  |                  |            |         |
|------------------------|-------------------|--------------------|------------------|------------------|------------------|------------|---------|
| Off-Site Worker        | Commute and       | Delivery Emission  | s Estimates      |                  |                  |            |         |
| Personnel              | # Workers         | Work Days/Yr       | RT Dist, miles   | Total Trips      | VMT/Yr           |            |         |
| Permanent              | 2                 | 252                | 50               | 504              | 25200            |            |         |
| Repair Crews           | 20                | 25                 | 50               | 500              | 25000            |            |         |
| Shepherds              | 3                 | 110                | 50               | 330              | 16500            |            |         |
| Panel Crews            | 25                | 40                 | 50               | 1000             | 50000            |            |         |
|                        |                   |                    |                  | Total VMT/Yr     | 116700           |            |         |
|                        |                   |                    |                  |                  |                  |            |         |
| Deliveries             | (1 deliveries/w   | eekday) HDDT       | 150              | 260              | 39000            |            |         |
| On-site Pickup T       | rucks and ATVs    |                    |                  |                  |                  |            |         |
| Category               | # Units           | VMT/day            | Days/Yr          |                  | VMT/Yr           |            |         |
| O&M                    | 8                 | 30                 | 130              |                  | 31200            |            |         |
| Panel Washing          | 15                | 40                 | 80               |                  | 48000            |            |         |
| ATV                    | 2                 | 40                 | 5                |                  | 48000            |            |         |
| AIV                    | 2                 | 40                 | 5                | Total VMT/Yr     | 79600            |            |         |
|                        |                   |                    |                  |                  | 79000            |            |         |
| On-Site Tractor        | lse               |                    |                  |                  |                  |            |         |
| Category               | # Units           | Hours/day          | Days/yr          | Avtg HP          | Total Hrs/Yr     |            |         |
| Diesel Tractor         | 2                 | 8                  | 100              | 98               | 1600             |            |         |
|                        | -                 | 0                  | 100              | 50               | 1000             |            |         |
| Composite LDA          | Emissions Facto   | ors, SJVAPCD Scei  | nario Year 2030  | , EMFAC2014 (lb  | s/VMT)           |            |         |
| NOx                    | СО                | VOC                | SOx              | PM10             | PM2.5            | CO2        |         |
| 0.000066               | 0.000872          | 0.000013           | 0.000005         | 0.000003         | 0.000003         | 0.481456   |         |
|                        |                   |                    |                  |                  |                  |            |         |
| Composite HD-D         | SL Emissions F    | actors, SJVAPCD    | Scenario Year 20 | 030, EMFAC2014   | l (lbs/VMT)      |            |         |
| NOx                    | со                | VOC                | SOx              | PM10             | PM2.5            | CO2        |         |
| 0.003142               | 0.00058           | 0.00011            | 0.000024         | 0.000008         | 0.000008         | 2.545193   |         |
|                        |                   |                    |                  |                  |                  |            |         |
| Worker Commu           | te Emissions E    | stimates (tons/y   | r)               |                  |                  |            |         |
| NOx                    | СО                | VOC                | SOx              | PM10             | PM2.5            | CO2        | CO2e    |
| 0.004                  | 0.051             | 0.001              | 0.000            | 0.000            | 0.000            | 28.093     | 28.194  |
|                        |                   |                    |                  |                  |                  |            |         |
| On-Site Pickup         | Frucks (O&M a     | nd Panel Washin    | g) Emissions Es  | timates (tons/yr | r)               |            |         |
| NOx                    | CO                | VOC                | SOx              | PM10             | PM2.5            | CO2        | CO2e    |
| 0.003                  | 0.035             | 0.001              | 0.000            | 0.000            | 0.000            | 19.162     | 19.231  |
|                        |                   |                    |                  |                  |                  |            |         |
| Tractor EF (lbs/h      | nr), 98 HP, CalEl | EMod, Appendix     | D, Table 3.5 (51 | -120 HP category | y for Year 2030) |            |         |
| NOx                    | CO                | VOC                | SOx              | PM10             | PM2.5            | CO2        |         |
| 0.3509                 | 0.8005            | 0.0588             | 0.0013           | 0.00648          | 0.00648          | 122.78     |         |
|                        |                   |                    |                  |                  |                  |            |         |
| <b>On-Site Tractor</b> | Use Emissions     | Estimates (tons/   | ˈyr)             |                  |                  |            |         |
| NOx                    | СО                | VOC                | SOx              | PM10             | PM2.5            | CO2        | CO2e    |
| 0.281                  | 0.640             | 0.047              | 0.001            | 0.005            | 0.005            | 98.224     | 98.565  |
|                        |                   |                    |                  |                  |                  |            |         |
|                        |                   | or Portable Gen S  |                  |                  | -                |            |         |
| NOx                    | CO                | VOC                | SOx              | PM10             | PM2.5            | CO2        | CO2e    |
| 0.385                  | 3.256             | 0.089              | 0.00762          | 0.012            | 0.01092          | 840.98     | 764.5   |
| Annual Emission        | ne Estimatos fo   | or Site Deliveries | (דחחו)           |                  |                  |            |         |
| NOx                    | CO                | VOC                | SOx              | PM10             | PM2.5            | CO2        | CO2e    |
| 0.061269               | 0.01131           | 0.002145           | 0.000468         | 0.000156         | 0.000156         | 49.6312635 | 49.802  |
| 0.001203               | 0.01131           | 0.002145           | 0.000400         | 0.000130         | 0.000130         | +9.0312033 | 49.002  |
| ****                   |                   |                    |                  |                  |                  |            |         |
| Cumulative Tota        | al-Annual Exha    | ust Emissions Est  | timates for One  | rations as WSP   | (tons/vr)        |            |         |
| NOx                    | CO                | VOC                | SOx              | PM10             | PM2.5            | CO2        | CO2e    |
| 0.733                  | 3.993             | 0.139              | 0.010            | 0.018            | 0.017            | 1036.090   | 960.292 |
| 5.700                  | 5.555             | 0.200              | 5.010            | 5.010            | 2.02/            |            |         |

#### OFFSITE PAVED ROAD FUGITIVE DUST EMISSIONS-OPERATIONS

(associated with delivery truck and worker vehicle traffic on I-5 and plant access road)

| Average mileage for C       | perations related vehicle | S:              | NA         | miles, roundtrip distance***                                                    |   |  |  |
|-----------------------------|---------------------------|-----------------|------------|---------------------------------------------------------------------------------|---|--|--|
| Avg weight of vehicul       | ar equipment on road:     |                 | 2.4        | tons (range 2 - 42 tons)                                                        |   |  |  |
| Road surface silt loadi     | ng factor:                |                 | 0.03       | g/m2 (range 0.03 - 400 g/m2)<br>Limited Access Freeway >10,000 ADT <b>(I-5)</b> |   |  |  |
| Particlesizemultiplie       | factors:                  | PM10            | 0.0022     | Ib/VMT                                                                          |   |  |  |
|                             |                           |                 |            |                                                                                 |   |  |  |
| C factors (brake and ti     | rewear):                  | PM10            | 0.00047    | Ib/VMT                                                                          |   |  |  |
|                             |                           |                 |            |                                                                                 |   |  |  |
| Avg vehicle speed on        | road:                     |                 | 65         | mph                                                                             |   |  |  |
| Niumah an af u ah i al an m | u de u                    |                 | <b>F</b> 4 | Inputs from Exhaust Calcs                                                       |   |  |  |
| Number of vehicles pe       | ar day:                   |                 | 51         |                                                                                 |   |  |  |
| Number of work days         | per month:                |                 | 30         | VMT/period: 171740                                                              | ) |  |  |
|                             | •                         | cles per month: | 1530       |                                                                                 |   |  |  |
| Number of work mont         | hs per year:              |                 | 10.67      | adjusted for precip events                                                      |   |  |  |
|                             | Total vehicles pe         | r OPsperiod:    | 16325.1    |                                                                                 |   |  |  |
|                             | PM10                      |                 |            |                                                                                 |   |  |  |
| Calc 1                      | 0.041                     |                 |            |                                                                                 |   |  |  |
| Calc 2                      | 2.442                     |                 |            |                                                                                 |   |  |  |
| Calc 3                      | 0.0007 Ib/VM              | Г               |            |                                                                                 |   |  |  |
| Emissio                     | ns PM10 PM2               | 2.5             |            |                                                                                 |   |  |  |

| 1 101 10 | 1 101 2.5 |
|----------|-----------|
| 118.67   | 20.06     |
| 0.059    | 0.010     |
|          | 118.67    |

EPA, AP-42, Section 13.2.1, Jan 2011

PM2.5 fraction of PM10 per CARB CEIDARs is 0.169

\*\*\* Note: avg roundtrip distance traveled by delivery or worker vehicles on freeways (I-5) and other State Routes in the project area.

Vehicles per day: worker + deliveries+staff support vehciles (averages)

### ONSITE UNPAVED ROAD FUGITIVE DUST-OPERATIONS

| Length of Unpaved Road used                                                          | 12             | miles*              |            |                                   |            |                |                |  |
|--------------------------------------------------------------------------------------|----------------|---------------------|------------|-----------------------------------|------------|----------------|----------------|--|
| Avg weight of operations vehic                                                       | 1.4            | tons (range 2       | - 42 tons) |                                   |            |                |                |  |
| Road surface silt content: (gravel roads)<br>Road surface material moisture content: |                |                     |            | % (range 1.8<br>% (range 0.03     | ,          |                |                |  |
|                                                                                      |                |                     | k          | а                                 | с          |                |                |  |
| Particle size multiplier factors:                                                    |                | PM10                | 1.5        | 0.9                               | 0.45       |                |                |  |
|                                                                                      |                | PM2.5               | 0.15       | 0.9                               | 0.45       |                |                |  |
|                                                                                      |                |                     |            |                                   |            |                |                |  |
| C factors (brake and tire wear):                                                     |                | PM 10               | 0.00047    | Ib/VMT                            |            |                |                |  |
|                                                                                      |                | PM2.5               | 0.00036    | lb/VMT                            |            |                |                |  |
| Avg operations vehicle speed o                                                       | n road         |                     | 10         | mph (range 5-55 mph)              |            |                |                |  |
|                                                                                      | in i uau.      |                     | 10         | mpn (range s                      | -55 (1101) |                |                |  |
| Avg number of operations vehi                                                        | cles per dav:  |                     | 32         | **                                |            |                |                |  |
| 5                                                                                    |                |                     |            |                                   | calo       | culated from / | Applicant data |  |
| Number of operations work day                                                        | ys per month   | 1:                  | 30         |                                   | VMT        | /period:       | 103600         |  |
|                                                                                      | Total vel      | hicles per month:   | 960        |                                   |            |                |                |  |
| Number of operations work mo                                                         | onths:         |                     | 10.67      | adjusted for precipitation events |            |                |                |  |
|                                                                                      |                | s per const period: | 10243.2    |                                   |            |                |                |  |
| Control efficiency (gravel roads                                                     | s, dust pallia | ttives, wetting):   | 80         |                                   |            |                |                |  |
|                                                                                      |                | ease Fraction =     | 0.8        |                                   |            |                |                |  |
|                                                                                      | 0.2            |                     |            |                                   |            |                |                |  |
| P                                                                                    | MI10 F         | PM2.5               |            | Emissions                         | PM 10      | PM 2.5         |                |  |
|                                                                                      | -              | 0.536               |            | lbs/period                        | 11829.46   | 1189.43        |                |  |
|                                                                                      |                | 0.710               |            | tons/period                       | 5.915      | 0.595          |                |  |
|                                                                                      |                |                     |            |                                   | 01010      | 0.000          |                |  |
| Calc 3 0                                                                             | .570           | 0.057               |            |                                   |            |                |                |  |
|                                                                                      |                | 0.057<br>0.057      |            |                                   |            |                |                |  |

Controlled Ib/VMT 0.114

EPA, AP-42, Section 13.2.2, Nov 2006.

Soil Moisture; 5% avg

Soil silt content: Plant road, AP-42, 6% (gravel covered service roads) \*value is the avg annual VMT per trip per vehicle on the unpaved roads

## EXPECTED INTERNAL COMBUSTION ENGINE EMISSIONS

| Liquid F  | uel                     |                              |         |        | # of Identical Engines: 2 |               |        |        |         |
|-----------|-------------------------|------------------------------|---------|--------|---------------------------|---------------|--------|--------|---------|
| Engine S  | ervice: P               | ortable Ge                   | nerator |        |                           |               |        |        |         |
| Mfg:      | Cummins                 | or equivale                  | nt      |        | Stack Dat                 | a (Optional)  |        |        |         |
| Engine#:  |                         |                              |         |        | Height:                   | 0             | Ft.    | 0.00   | m       |
| Kw        |                         |                              |         |        | Diameter:                 | 0             | Ft.    | 0.00   | m       |
| BHP:      | 175                     |                              |         |        | Temp:                     | 0             | deg F  | 255.2  | deg K   |
| RPM:      | 1760                    |                              |         |        | ACFM:                     | 0             |        | 0.00   | m3/sec  |
| Fuel:     | #2 ULS D                | iesel                        |         |        | Area:                     | 0.0000        | Sq.Ft. | 0.0000 | m2      |
| Fuel Use: | 9.63                    | Gph (1)                      |         |        | Velocity:                 | 0.00          | Ft/Sec | 0.00   | m/sec   |
| FuelHHV:  | FuelHHV: 139000 Btu/gal |                              |         |        |                           |               |        |        |         |
| mmbtu/hr: | 1.34                    | HHV                          |         |        | # of Runs per Day: 1      |               |        |        |         |
| EPA Tier: | 4 Final                 |                              |         |        | Max Daily                 | Op Hrs:       | 8      |        |         |
|           | (applicabl              | pplicable to 2013 and later) |         |        | Max Annual Op Hrs: 480    |               |        |        |         |
| Fuel Wt:  | 6.87                    | Lbs/gal                      |         |        |                           |               |        |        |         |
| Fuel S:   | 0.0015                  | <mark>0015</mark> % wt.      |         |        |                           |               |        |        |         |
| Fuel S:   | 0.10305                 | Lbs/1000 (                   | gal     |        |                           |               |        |        |         |
| SO2:      | 0.2061                  | Lbs/1000 g                   | gal     |        |                           |               |        |        |         |
|           |                         |                              |         |        |                           | Single Engine |        |        | Engines |
| EFs(g/bh  | p-hr)                   | Source                       | Lb/Hr   | Lb/Day | Lbs/Yr                    | Tons/Yr       | Lb/Hr  | Lb/Day | Lbs/Yr  |
| NOx       | 0.26                    | CARB                         | 0.80    | 0.80   | 384.85                    | 0.192         | 1.60   | 1.60   | 769.6   |
| CO        | 2.2                     | CARB                         | 6.78    | 6.78   | 3256.39                   | 1.628         | 13.57  | 13.57  | 6512.7  |
| VOC       | 0.06                    | CARB                         | 0.19    | 0.19   | 88.81                     | 0.044         | 0.37   | 0.37   | 177.6   |

| VOC     | 0.06      | CARB | 0.19   | 0.19  | 88.81  | 0.044      | 0.37 | 0.37 | 177.62  | 0.089      |
|---------|-----------|------|--------|-------|--------|------------|------|------|---------|------------|
| PM10    | 0.008     | CARB | 0.02   | 0.02  | 11.84  | 0.006      | 0.05 | 0.05 | 23.68   | 0.012      |
| SOx     | NA        |      | 0.0159 | 0.02  | 7.62   | 0.00381    | 0.03 | 0.03 | 15.24   | 0.00762    |
|         | lbs/mmbtu |      |        |       |        |            |      |      |         |            |
| CO2     | 163.052   |      | 1746   | 1746  | 838105 | 419.05     | 3492 | 3492 | 1676210 | 838.11     |
| Methane | 0.00661   |      | 0.0708 | 0.071 | 33.98  | 1.6988E-02 | 0.14 | 0.14 | 67.95   | 3.3976E-02 |
| N2O     | 0.001323  |      | 0.0142 | 0.014 | 6.80   | 3.4002E-03 | 0.03 | 0.03 | 13.60   | 6.8004E-03 |
| CO2e    |           |      |        |       |        | 420.490    |      |      |         | 840.981    |
|         |           |      |        |       |        |            |      |      | Mtons   | 764.53     |

769.69

6512.78

Tons/Yr

0.385

3.256

#### Notes:

- 1. fuel consumption based on 0.055 gal/hp-hr (avg EPA and SCAQMD values)
- if no value given by mfg for specific engine.
- 2. PM10 equals PM2.5.
- 3. PM10 used in HRA to represent DPM emissions.
- 4. GHG Efs: FR 74, #209, Part 98 Subpart C, 10-30-2009, Pg. 56409-56411, Tables C-1 and C-2. #2 Diesel Fuel. GWP values: 40 CFR 98, Subpart A, Table A-1
- 5. fuel density and heat values are EPA defaults unless otherwise specified

## Average Vehicle Weight Estimate for Operations Period

| On Road Commute a | nd Delivery |
|-------------------|-------------|
|-------------------|-------------|

| Un Ko                  | ad Commute a  |            |                |                                                 |
|------------------------|---------------|------------|----------------|-------------------------------------------------|
| Vehicle                | Weight        | # Vehicles | Frac. of total |                                                 |
| Туре                   | tons          | per day    | vehicles       |                                                 |
|                        |               |            |                |                                                 |
| Passenger LDP/LDT      | 1.5           | 50         | 0.962          | Worker and support travel vehicles              |
| HDD Loaded             | 35            | 1          | 0.019          |                                                 |
| HDD Unloaded           | 15            | 1          | 0.019          | Materials delivery trucks, service trucks, fuel |
| MDGT Loaded            | 15            | 0          | 0.000          | trucks, concrete trucks, etc.                   |
| MDGT Unloaded          | 5             | 0          | 0.000          |                                                 |
|                        |               | 52         | 1.000          |                                                 |
| Vehicle Total          |               | 51         |                |                                                 |
|                        |               |            |                |                                                 |
| Weighted Avg Vehicle W | eight, tons : |            | 2.4            |                                                 |
|                        | Onsite Ops Ve | hicles     |                |                                                 |
| Passenger LDP/LDT      | 1.5           | 23         | 0.676          |                                                 |
| Tractor                | 2             | 2          | 0.059          |                                                 |
| Port Gen Set           | 1             | 2          | 0.059          | On its Environment                              |
| ATV                    | 0.5           | 2          | 0.059          | Onsite Equipment                                |
| Water Trailer          | 1.5           | 5          | 0.147          |                                                 |
|                        |               | 34         | 1.000          |                                                 |
| Vehicle Total          |               | 27         |                |                                                 |
| Weighted Avg Vehicle W | eight, tons : |            | 1.4            |                                                 |

Ref: Mission Rock Energy Center, AFC-Air Quality Analysis, Appendix 5.1E, 10/2015.